Several lines of evidence, including familial aggregation, suggest that allelic variation contributes to risk of diabetic nephropathy. To assess the evidence for specific susceptibility genes, we used the transmission/disequilibrium test (TDT) to analyze 115 candidate genes for linkage and association with diabetic nephropathy. A comprehensive survey of this sort has not been undertaken before. Single nucleotide polymorphisms and simple tandem repeat polymorphisms located within 10 kb of the candidate genes were genotyped in a total of 72 type 1 diabetic families of European descent. All families had at least one offspring with diabetes and end-stage renal disease or proteinuria. As a consequence of the large number of statistical tests and modest P values, findings for some genes may be false-positives. Furthermore, the small sample size resulted in limited power, so the effects of some tested genes may not be detectable, even if they contribute to susceptibility. Nevertheless, nominally significant TDT results (P < 0.05) were obtained with polymorphisms in 20 genes, including 12 that have not been studied previously: aquaporin 1; B-cell leukemia/lymphoma 2 (bcl-2) proto-oncogene; catalase; glutathione peroxidase 1; IGF1; laminin alpha 4; laminin, gamma 1; SMAD, mothers against DPP homolog 3; transforming growth factor, beta receptor II; transforming growth factor, beta receptor III; tissue inhibitor of metalloproteinase 3; and upstream transcription factor 1. In addition, our results provide modest support for a number of candidate genes previously studied by others.

Diabetic nephropathy is the most serious long-term complication of diabetes, accounting for ∼40% of new cases of end-stage renal disease (ESRD) in the U.S. (1). Two lines of evidence suggest a strong genetic component in susceptibility to diabetic kidney disease. 1) Epidemiological studies indicate that the prevalence of diabetic nephropathy increases during the first 15–20 years after onset of diabetes and then reaches a plateau, suggesting that only a subset of patients is susceptible to the development of kidney disease (2). 2) Family studies show clustering of diabetic nephropathy in both type 1 and type 2 diabetes; diabetic siblings of probands with diabetic nephropathy have a significantly greater risk for developing kidney complications than diabetic siblings of probands without diabetic nephropathy (36). In addition, segregation analyses of diabetic nephropathy in both Caucasians and Pima Indians with type 2 diabetes provide evidence for the presence of a major locus, with a possible role for several minor loci (7,8).

Numerous metabolic pathways and associated groups of genes have been proposed as candidates to play a role in the genetic susceptibility to diabetic nephropathy (912). Before onset of overt proteinuria, functional changes are observed in the kidney (altered glomerular filtration rates and increasing albumin excretion rates), which are thought to result from the underlying pathological changes that occur. These changes include thickening of the glomerular basement membrane and expansion of the mesangium due to accumulation of extracellular matrix proteins. Products of a wide range of genes might mediate these renal changes. Examples include 1) the synthesis and degradation of glomerular basement membrane and mesangial matrix components; 2) components of metabolic pathways involving glucose metabolism and transport; 3) blood pressure regulation and the renin-angiotensin system; 4) cytokines, growth factors, signaling molecules, and transcription factors; and 5) advanced glycation processes. Many of these candidate genes have been tested for association with diabetic nephropathy, typically in case-control studies of only one or a few genes (Table 1). In many instances, initial reports were not confirmed in follow-up studies.

We have carried out family-based studies with simple tandem repeat polymorphisms (STRPs) and single nucleotide polymorphisms (SNPs) in 83 candidate genes that have not been studied previously and 32 genes or gene regions that have been reported as having significant association or linkage with diabetic nephropathy (Table 1). No previous studies have undertaken a comprehensive assessment of the evidence for many candidate genes at once, applying the same approaches and using a single sample of patient material. We therefore had two related goals: review briefly all relevant published studies, and carry out a thorough assessment ourselves. All our results were obtained from patients who have both diabetic nephropathy and type 1 diabetes. Consequently, it is formally possible that positive findings are due to diabetes rather than diabetic nephropathy. All of the candidate genes were chosen for a possible role in kidney disease, not in diabetes. Positive results would be of interest in either case, and the possibilities can be resolved by studying patients who have long-standing diabetes without diabetic nephropathy.

For analysis of our own data, we used the transmission/disequilibrium test (TDT) in its original form (13). The TDT tests for the simultaneous presence of linkage and allelic association between a genetic marker and a putative disease susceptibility locus. Because linkage and association, when present together, define linkage disequilibrium, we refer to the TDT as a test for linkage disequilibrium. If there is only loose (or no) linkage, or if allelic association is only weak or absent, linkage disequilibrium will not be strong, and the TDT will not detect an effect.

Forty-three families of European descent were ascertained through an index case subject with type 1 diabetes and diabetic nephropathy through the Penn Transplant Center of the University of Pennsylvania Health System. Diabetic individuals were considered to have diabetic nephropathy if they had ESRD or if their albumin-to-creatinine ratio was >300 μg/mg in two of three random urine samples collected at least 6 weeks apart. When available, diabetic siblings of the index case subject were phenotyped using the same criteria. Twenty-nine additional families with type 1 diabetes from the Human Biological Data Interchange (HBDI) collection (14) were also included in this study. These families were contacted in collaboration with HBDI to obtain updated medical information, including the presence of ESRD and information on relevant medications. In the absence of ESRD, diabetic nephropathy status was determined as described above. The total family material consisted of 72 families with type 1 diabetes: 68 parent-child trios and 4 multiplex families. Among the 77 diabetic offspring in these families, 73 had received a kidney transplant. The mean ± SD age at diagnosis of diabetes was 11.1 ± 6.1 years (range, 1–30), and the mean duration of diabetes before transplant was 23.9 ± 5.9 years (range, 12–42). At the time of enrollment into this study, the mean duration of diabetes was 29.7 ± 8.6 years (range, 17–53). The mean time elapsed between transplant and enrollment (or until death 8 years after transplant in one case subject) was 6.5 ± 5.5 years (range, <1–30). This study was carried out in accordance with the protocol and informed consent forms approved by the Institutional Review Board of the University of Pennsylvania.

Thirty-six Centre d’Etude du Polymorphisme Humain (CEPH) families (two parents and three offspring in each family) were studied for transmission distortion in nondiabetic control subjects. In these families, we genotyped 29 SNP markers that showed nominally significant evidence for linkage disequilibrium with diabetic nephropathy.

DNA preparation.

For individuals ascertained through the University of Pennsylvania, total genomic DNA was prepared from peripheral blood leukocytes using the PureGene protocol (Gentra Systems). DNA for the HBDI and CEPH families was obtained from the Coriell Cell Repositories (Coriell Institute for Medical Research).

Candidate genes and genotyping.

Candidate genes were chosen because of their role in normal or pathological kidney function and from published reports of candidate gene or expression studies. In the initial phase of this study, linkage disequilibrium with diabetic nephropathy was assessed using STRPs mapping in or close to the candidate gene. These markers were selected from the UCSC Genome Bioinformatics site (http://genome.cse.ucsc.edu/). PCR primers were designed from the surrounding sequence, and PCR amplification was carried out by standard methods using fluorescently labeled primers (15). PCR products were electrophoresed on an Applied Biosystems 377 DNA Sequencer, and the genotypes were analyzed using Genescan and Genotyper software.

SNPs in candidate genes were identified using either dbSNP at National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/SNP/) or Applied Biosystems/Celera Discovery System (http://www.appliedbiosystems.com and http://www.celeradiscoverysystem.com). Polymorphic markers reported by others to be associated with diabetic nephropathy (Table 1) were also genotyped. (In most cases, the restriction digest assays described in the literature were converted to Applied Biosystems Taqman Genotyping Assays.) The goal was to genotype one SNP approximately every 20 kb. (Mean spacing of SNPs was 17.3 kb; range, 1.2–88.4 kb; median, 13.4 kb). For genes <20 kb in genomic extent, typically one SNP was typed. When available, SNPs located in exons were genotyped in preference to those in introns if the minor allele frequency exceeded ∼0.2. Some of the SNP genotyping was carried out by restriction enzyme digestion, sequencing, or fluorescent polarizatation with AcycloPrime-FP SNP detection assays read on a Victor multilabel reader (Perkin Elmer Life Sciences). For most SNPs, we used Applied Biosystems Taqman SNP Genotyping Assays and read results on an Applied Biosystems 7900HT Sequence Detection System. For specific PCR primer information and information on individual SNP locations, see supplemental Tables 1 and 2, respectively, which are presented in the online appendix (available at http://diabetes.diabetesjournals.org).

Statistical analysis.

To assess linkage disequilibrium, differential transmission of polymorphic variants from heterozygous parent to affected child was tested by the TDT (13). TDT for haplotypes was carried out with Genehunter (16). In multiplex families, the TDT is not strictly valid as a test of association. However, in view of the small number of multiplex families (4 of 72), we did not correct for the small effect of this departure from the assumptions. The maximum number of transmissions in our sample was 83, and some rarer alleles provided samples of fewer than 30. To avoid compromising statistical power excessively, we restricted analysis to alleles for which the sum of transmissions and nontransmissions from informative parents was 40 or greater. For this minimum sample size of 40, we calculated the power to detect departures from the null hypothesis of 50% transmission in a two-sided test with α = 0.05. We used the normal approximation to the binomial distribution as implemented in SISA (Simple Interactive Statistical Analysis) (17). For a transmission rate of 0.6, power is 0.24; for transmission rate 0.7, power is 0.73. These values are lower limits for the anticipated power. We also calculated the corresponding values of power for 60 transmissions: 0.34 and 0.89 for transmission rates of 0.6 and 0.7, respectively. For most markers, the sample size was larger than 40, providing greater power to detect the stated degree of differential transmission.

Nominal P values for significance of the TDT χ2 are reported without correction for multiple testing, but we indicate here what minimal P values would be required if Bonferroni correction were used. The number of statistical tests for markers at one candidate gene was typically three to four; for four tests, Bonferroni correction would require a nominal P of 0.0125 for adjusted P = 0.05 and 0.0025 for adjusted P = 0.01. The total number of statistical tests was ∼380. Bonferroni correction would require a nominal P of 1.3 × 10−4 for an adjusted P of 0.05 and 2.6 × 10−5 for an adjusted P of 0.01.

Diabetic nephropathy candidate gene polymorphisms not previously tested (83 genes).

Of the total of 115 genes with results reported here, 83 have not been tested previously, to our knowledge. Among these 83 genes, the TDT was nominally significant (P < 0.05) for 12 (summarized individually below and in Table 2). The nonsignificant results for the remaining 71 genes are summarized in Table 3.

B-cell leukemia/lymphoma 2 (bcl-2) proto-oncogene.

Ten SNPs in B-cell leukemia/lymphoma 2 (bcl-2) proto-oncogene (BCL2) were genotyped in the 72 diabetic nephropathy families. Three gave nominally significant evidence for linkage disequilibrium with diabetic nephropathy: rs2062011 (P = 0.001), rs12457700 (P = 0.006), and rs1481031 (P = 0.009). All three SNPs lie in a 24-kb region in intron 1 (192 kb) of BCL2.

Catalase.

We genotyped two SNPs in catalase (CAT). Both were nominally significant: rs1049982, located in the 5′-untranslated region (UTR) (P = 0.006); and rs560807, located in intron 1 (P = 0.044).

Laminin, alpha 4.

Eight SNPs and one STRP were genotyped in laminin, alpha 4 (LAMA4). One SNP, rs3734287, located in an intron, gave a nominally significant result (P = 0.016).

Transforming growth factor, beta receptor II and transforming growth factor, beta receptor III.

Seven SNPs were genotyped in transforming growth factor, beta receptor II (TGFBR2) and 10 in transforming growth factor, beta receptor III (TGFBR3). One SNP in each of these unlinked genes gave a nominally significant result: rs6792117, located in an intron of TGFBR2 (P = 0.024); and rs12756024, located in an intron of TGFBR3 (P = 0.018).

Glutathione peroxidase 1.

The single SNP we tested in glutathione peroxidase 1 (GPX1), rs1800668, was nominally significant (P = 0.022).

Laminin, gamma 1.

We tested 12 SNPs in laminin, gamma 1 (LAMC1). Significant TDT results were found across the entire gene, suggesting strong linkage disequilibrium. We found that the linkage disequilibrium parameter D′ for the mostly widely spaced markers (separated by 125 kb) ranged from 0.7 to 0.9 (P < 0.01). The strongest evidence for linkage disequilibrium with diabetic nephropathy was found with a synonymous SNP, rs20557 (Asn837Asn, P = 0.026). There is thus modest evidence for association of diabetic nephropathy with LAMC1; however, the strong linkage disequilibrium across the gene will make it difficult to narrow the critical region using genetic means.

SMAD, mothers against DPP homolog 3.

We tested seven SNPs in SMAD, mothers against DPP homolog 3 (SMAD3). Linkage disequilibrium with two intronic SNPs, rs12594610 and rs4776890, located 2.9 kb apart, was nominally significant (P = 0.033 and 0.046, respectively).

Upstream transcription factor 1.

Four SNPs were genotyped in upstream transcription factor 1 (USF1). One of these, rs2516839, located in the 3′-UTR, gave a nominally significant result (P = 0.047).

Aquaporin 1, IGF1, and tissue inhibitor of metalloproteinase 3.

Nominally significant results were found for STRP markers near three genes: aquaporin 1 (AQP1), IGF1, and tissue inhibitor of metalloproteinase 3 (TIMP3). The markers were D7S526 located 2.7 kb 5′ of AQP1 (125-bp allele, P = 0.027), MFD1 (GDB: 171128) located 0.7 kb 5′ of IGF1 (209-bp allele, P = 0.047), and D22S280 in the 3′-UTR region of TIMP3 (214-bp allele, P = 0.048). For each of these genes, we followed up by testing two or three SNPs in or near the gene and found no evidence to support the result from the STRP. We have not pursued these genes further.

Table 3 presents the results for SNPs and STRPs in 71 additional “new” candidate genes (not previously tested) that showed no significant linkage disequilibrium with diabetic nephropathy. In view of the marker spacing (mean of 17.2 kb) and the modest power of the sample, we consider the absence of significant linkage disequilibrium to be inconclusive evidence concerning a role for these genes.

Follow-up of previously reported diabetic nephropathy associations (32 genes).

We genotyped SNPs in 32 candidate genes that have been studied previously by others. Table 4 shows results from our TDT studies for 11 of these genes. In eight of these, we found nominally significant results. Table 4 also includes results for SNPs in three genes (ACE, aldose reductase [AKR1B1], and apolipoprotein E [APOE]) that deserve attention because they have been the subject of numerous diabetic nephropathy association studies. For these genes, we found a trend that supports published results, although our results were not significant, perhaps because of the small sample size. The nonsignificant results for the remaining 21 genes are summarized in Table 5.

Collagen, type IV, alpha 1.

Nine SNPs and one STRP were genotyped in collagen, type IV, alpha 1 (COL4A1). Two SNPs in intron 1 showed significant association with diabetic nephropathy: rs614282 (P = 0.002) and rs679062 (P = 0.0002). Because of the strong evidence with the latter SNP, we looked for nearby coding SNPs. We sequenced a 700-bp region that included all of exon 2 (located ∼4 kb from rs614282) in two sets of pooled DNA samples: 16 diabetic nephropathy and 42 CEPH individuals. No sequence variants were found, suggesting that no common disease-associated variant is located in this nearby exon.

Two studies of COL4A1 by others (18,19) led to contradictory conclusions that have not been followed up since. The region of association we found in intron 1 lies ∼100 kb 5′ to a polymorphic HindIII restriction site found by Krolewski et al. (19) to be associated with increased risk for progression to overt nephropathy. Chen et al. (18) failed to confirm this finding with a larger sample (n = 116 diabetic nephropathy and 91 individuals with long-standing diabetes but no evidence of kidney disease [diabetic nephropathy negative]). In our studies, SNP rs1133219, located only 8 kb from the site first tested by Krolewski et al. (19), provided no significant evidence (55 transmissions, P = 0.53).

Angiotensin II receptor, type 1 region.

Moczulski et al. (20) reported linkage and association studies in discordant sibpairs and parent-offspring trios with a diabetic nephropathy or diabetic nephropathy–negative offspring. They found linkage with the STRPs ATCA (located near the angiotensin II receptor, type 1 [AGTR1 gene]) and D3S1308 (located 575 kb telomeric to AGTR1), but no association was found with six SNPs in AGTR1 or with any alleles of ATCA. (No association results were reported for D3S1308.) We tested these two STRPs, plus three additional SNPs in AGTR1. These included the A1166C SNP reported previously (2124). We also tested 11 SNPs located in the 1-Mb region telomeric to AGTR1 (summarized in Table 4). The only significant evidence for linkage disequilibrium with diabetic nephropathy is seen at D3S1308 itself (allele 2 [106 bp], P = 0.001; and allele 3 [108 bp], P = 0.009; alleles named as in GDB allele set: 63031, http://gdbwww.gdb.org).

Lipoprotein lipase.

Five SNPs in lipoprotein lipase (LPL) were tested. Three of the SNPs, located in a 5.4-kb region near the 3′ end of the gene, had nominally significant TDT results: rs320 (P = 0.005), rs326 (P = 0.011), and rs13702 (P = 0.004). In a study of Caucasian type 1 diabetic patients, Orchard et al. (25) reported an association between rs320 (a HindIII restriction site) and increased albumin-to-creatinine ratio.

Protein kinase C, beta 1.

Eleven SNPs and one STRP in or near protein kinase C, beta 1 (PRKCB1) were genotyped. Only SNP rs1015408, located in intron 4, was nominally significant (P = 0.025). Two of the SNPs we genotyped were previously found to be associated with diabetic nephropathy (26): rs3760106 (C-1504T) and rs2575390 (G-546C). However, in our families, there was no significant evidence for linkage disequilibrium with either of these SNPs.

Neuropilin 1.

Iyengar et al. (27) found linkage between D10S1654 and diabetic nephropathy in Caucasian sibpairs with type 2 diabetes. Because this marker maps in an intron of neuropilin 1 (NRP1), we tested seven SNPs in this gene. Two of these, rs869636 and rs2804495, located 40 kb apart in intron 2, were nominally significant (P = 0.047 and 0.027, respectively).

HNF1B1/transcription factor 2, hepatic (MODY5).

Several studies have reported that rare mutations in HNF1B1 are associated with renal dysfunction in Japanese and Caucasian maturity-onset diabetes of the young families (2831). However, no HNF1B1 mutations were found among 63 German and Czech type 2 diabetic patients with diabetic nephropathy (32). In our type 1 diabetic families with diabetic nephropathy, we found nominally significant evidence with an SNP located in the 3′-UTR (rs2688, P = 0.029), but three SNPs in introns of HNF1B1 and one located 2.2 kb 3′ of the gene failed to support this finding.

p22phox/cytochrome b-245, α-polypeptide.

Three SNPs were genotyped in p22phox, including rs4673 (C242T, His72Tyr) previously studied for association with diabetic nephropathy in Caucasians with type 1 diabetes (33) and Japanese with type 2 diabetes (34). In our type 1 diabetic families, the 242C-allele was significantly over-transmitted (P = 0.032). This result supports the findings of Matsunaga-Irie et al. (34), but is not consistent with those of Hodgkinson et al. (33), in which the TT genotype was significantly more frequent in diabetic patients with nephropathy than in the control group.

Matrix metalloproteinase 9.

Maeda et al. (35) and Hirakawa et al. (36) found evidence for association in Japanese and Caucasian type 2 diabetic patients, respectively, between diabetic nephropathy and D20S838, an STRP located in the promoter region of matrix metalloproteinase 9 (MMP9). In contrast, we found no evidence for an association with any allele of D20S838. Our results did provide nominally significant evidence for linkage disequilibrium between diabetic nephropathy and rs11697325, an SNP located 8.2 kb 5′ of MMP9 (P = 0.029), but this was not supported by results from rs2664538, a nonsynonymous SNP (Gln279Arg) in exon 6 of MMP9.

Other previously tested genes.

Table 5 gives the results for the 21 genes with previously reported diabetic nephropathy associations for which we found no significant linkage disequilibrium with diabetic nephropathy. As noted above, three genes for which our results are negative (ACE, AKR1B1, and APOE) have been the subject of many studies of association in diabetic nephropathy, so we comment further here. The variants tested were as follows: 1) the 287-bp insertion/deletion (in/del) polymorphism in intron 16 of ACE (3744), 2) the CA-repeat STRP at AKR1B1 (4551), and 3) the APOE polymorphism (25,5256). In our results (Table 4), we see a trend that supports these findings, but our sample size is small, and results are mostly not significant: ACE in/del (deletion allele, 38:31 transmissions:nontransmissions, 55.1% transmissions in the TDT analysis, P > 0.5); AKR1B1 5′CA-repeat polymorphism (Z−2 allele, 27:22, 55.1% transmissions, P > 0.5; Z+2 allele, 8:15, 34.8% transmissions, P > 0.5); and APOE (e2 “risk” allele, 12:2, 85.7% transmissions, P = 0.008).

For all of the genes in Table 5 in which we tested more than one marker, we also examined results of the TDT with the corresponding haplotypes. Among 12 genes tested, we found nominally significant results with several (smallest P = 0.009). However, in this analysis, all possible haplotypes were tested, and the results in all cases are based on fewer than 40 transmissions, reducing our confidence that these are true positives.

TDT in CEPH control families.

We were concerned that an SNP allele that appeared to be associated with diabetic nephropathy might be preferentially transmitted, for reasons unrelated to diabetes or diabetic nephropathy. To address this possibility of transmission distortion, we focused on genes in which at least one SNP was significant at P < 0.05 in the TDT analysis. (There were 29 such SNPs in 16 genes; in 4 additional genes, the only markers with P < 0.05 were STRPs, and these were not tested in control subjects.) We genotyped the 29 SNPs in 36 CEPH families, considered as unselected control subjects (detailed results not shown). For most transmissions, the sample size was somewhat larger (maximum, 114) than in the diabetic nephropathy families.

Only three SNPs had transmission distortion with nominal P < 0.05 in the CEPH families. For rs560807 in CAT (P = 0.022) and rs11697325 in MMP9 (P = 0.035), the allele that was over-transmitted in the diabetic nephropathy families was significantly under-transmitted in the CEPH families, slightly strengthening the evidence from the diabetic nephropathy families. At the third SNP, rs6792117 in TGFBR2, the same allele was over-transmitted in both sets of families, but the effect was barely significant in the CEPH families (P = 0.048). For a more global view, we looked at the whole set of 29 SNPs in 16 genes. In the diabetic nephropathy data, the P values range from 0.0002 to 0.05, and almost 50% (13 of 29) have P < 0.025. In contrast, in the CEPH families, there is only one SNP with P < 0.025 (rs560807 in CAT), and as noted above, this result is “in the direction” opposite to that seen in the diabetic nephropathy families.

Our principal goal was to assess the evidence for a contribution to diabetic nephropathy susceptibility at 115 candidate genes. By carrying out a comprehensive analysis of all of the genes on the same family material, we have provided a large set of comparable findings, a feature lacking in the results from very heterogeneous existing studies. One of our findings is significant beyond the nominal P = 0.001 level (0.0002, for COL4A1), but interpretation of this and all of our findings is complicated by the multiple testing problem. For interpretation of P values, we suggest the following approach, which is based on genes, not on individual markers. Markers within a gene tend to be correlated to varying degrees. For this and other reasons (57), adjustment for the full number of markers tested (e.g., by Bonferroni correction) is likely to be too stringent. Instead of considering individual P values, we identified the genes with at least one P value <0.05. Among the 83 “new” genes, we would expect 0.05 × 83 = 4.2 genes with P values at or less than P = 0.05 by chance. We found 12 such genes, more than twice the number expected. Furthermore, for one of these genes (BCL2), the SNP with the smallest P value has P = 0.001, much smaller than the 0.05 threshold. We consider it very likely that the findings for some of these 12 genes are “true positives,” reflecting cases in which genetic variation does influence risk of diabetic nephropathy, and of course, the strongest evidence is for BCL2.

We use the same approach to interpret our results for candidate genes studied previously by others. Among these 32 genes, we would expect 0.05 × 32 = 1.6. We found eight, five times as many as expected by chance. The most extreme P values for two of the genes are P = 0.0002 (COL4A1) and P = 0.0011 (D3S1308 in the AGTR1 region). By the same argument used above, we consider it likely that some of these eight are true positive results. Thus among the 115 genes tested, there are 20 (12 “new,” 8 “old”) with P < 0.05. This is more than three times as many as expected (5.8), and we consider this a promising finding for future follow-up.

We comment briefly on the functional categories represented by the 20 genes with nominally significant results. 1) Three genes code for components of the extracellular matrix (COL4A1, LAMA4, and LAMC1), and two are involved in its metabolism (MMP9 and TIMP3). 2) Five genes code for transcription factors or signaling molecules (HNF1B1/TCF2, NRP1, PRKCB1, SMAD3, and USF1). 3) Three genes code for growth factors or growth factor receptors (IGF1, TGFBR2, and TGFBR3). The other genes (AGTR1, AQP1, BCL2, CAT, GPX1, LPL, and p22phox) code for a variety of products likely to be relevant in kidney function. We recognize that there are probably some false-positives among these 20 genes. Furthermore, as noted above, the results could in principle be due to type 1 diabetes instead of diabetic nephropathy, but in view of the known functions of these genes, this possibility seems unlikely.

Our many negative results call for some comment. For several very large genes (for example, latent transforming growth factor beta binding protein 1 [LTBP1] and IGF1 receptor) the small number of SNPs we tested led to very large spacing between SNPs, so a negative result does not constitute strong evidence against a contribution by the gene. In addition, we note that our study is based entirely on type 1 diabetic patients of European ancestry. Our results might not be directly comparable with those for candidate genes studied previously in other ethnic groups or in type 2 diabetes. Finally, in any study, including the present one, both positive and negative results must be interpreted with awareness of the limitations imposed by sample size and multiple testing. In particular, nonsignificant results must be viewed against the background of anticipated effect size and likely statistical power. With our modest sample size throughout, it is likely that some effects of candidate genes have not been detected, or not been confirmed, even though they are “real.”

Gene abbreviations.

ACE, angiotensin I converting enzyme; ACVR2, activin A receptor, type IIA; AGT, angiotensinogen; AGTR1, angiotensin II receptor, type 1; AKR1B1(AR), aldose reductase; ANG, angiogenin, ribonuclease, RNase A family, 5; APOC2, apolipoprotein C2; APOC4, apolipoprotein C4; APOE, apolipoprotein E; AQP1, aquaporin 1; AXL, AXL receptor tyrosine kinase; BCL2, B-cell leukemia/lymphoma 2 (bcl-2) proto-oncogene; BDKRB2, bradykinin receptor B2; BMP2, bone morphogenetic protein 2 precursor; BMP7, bone morphogenetic protein 7; CALD1, caldesmon 1; CAT, catalase; CCL2, chemokine (C-C motif) ligand 2; CCR5, chemokine (C-C motif) receptor 5; CD36, CD36 antigen; CNOT4, CCR4-NOT transcription complex, subunit 4; COL1A1, collagen, type I, alpha 1; COL4A1, collagen, type IV, alpha 1; COL4A2, collagen, type IV, alpha 2; COL4A3, collagen, type IV, alpha 3; COL4A4, collagen, type IV, alpha 4; CPA3, carboxypeptidase A3 ; CTGF, connective tissue growth factor; CTSD, cathepsin D; CTSL, cathepsin L; ECE1, endothelin converting enzyme 1; EDN1, endothelin 1; EDN2, endothelin 2; EDN3, endothelin 3; EDNRA, endothelin receptor type A; EDNRB, endothelin receptor type B; EGF, epidemal growth factor; ENPP1 (PC-1), ectonucleotide pyrophosphatase/phosphodiesterase 1; FBLN1, fibulin 1; FBN1, fibrillin; FN1, fibronectin 1; FOS, v-fos FBJ murine osteosarcoma viral oncogene homolog; GAS6, growth arrest–specific 6; GFPT2, glutamine-fructose-6-phosphate transaminase 2; GH1, growth hormone; GLUT1 (SLC2A1), glucose transporter-1, solute carrier family 2, member 1; GLUT2 (SLC2A2), glucose transporter-2, solute carrier family 2, member 2; GPX1, glutathione peroxidase 1; GREM (CKTSF1B1), gremlin 1 homolog, cysteine knot superfamily; HNF1B1 (TCF2), transcription factor 2, hepatic; HPS3, Hermansky-Pudlak syndrome 3; HSD3B1, hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1; HSPG1 (SDC2), heparan sulfate proteoglycan 1 (syndecan 2); HSPG2, heparan sulfate proteoglycan 2 (perlecan); ICAM1, intercellular adhesion molecule 1; IGF1R, IGF1 receptor; IL10, interleukin 10; IL1A, interleukin-1, alpha; IL1B, interleukin-1, beta; IL1R1, interleukin-1 receptor type 1; IL1RN, interleukin-1 receptor antoginist; ITGA1, integrin, alpha 1; ITGA3, integrin, alpha 3; LAMA4, laminin, alpha 4; LAMB1, laminin, beta 1; LAMC1, laminin, gamma 1; LAMC2, laminin, gamma 2 ; LGALS3, lectin, galactoside-binding, soluble, 3; LPL, lipoprotein lipase; LTBP1, latent transforming growth factor beta binding protein 1; MIG6, mitogen-inducible gene 6 protein; MMP1, matrix metalloproteinase 1; MMP2, matrix metalloproteinase 2; MMP3, matrix metalloproteinase 3; MMP9, matrix metalloproteinase 9; MTHFR, 5,10-methylenetetrahydrofolate reductase (NADPH); NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1; NID, nidogen (enactin); NOS3, nitric acid synthetase 3 (endothelial); NOX4, NADPH oxidase 4; NPHS1, nephrin; NPPA, natriuretic peptide precursor A; NRP1, neuropilin 1; OPN (SPP1), osteopontin (secreted phosphoprotein 1); p22phox, (CYBA), cytochrome b-245, alpha polypeptide; PDGFB, platelet-derived growth factor beta polypeptide; PDGFRB, platelet-derived growth factor receptor, beta; PPARG, peroxisome proliferative–activated receptor, gamma; PRKCA, protein kinase C, alpha; PRKCB1, protein kinase C, beta 1; REN, renin; SAH, SA hypertension-associated homolog (rat); SELE, selectin E; SELL, selectin L; SGK, serum/glucocorticoid regulated kinase; SLC12A3, solute carrier family 12 (sodium/chloride transporters), member 3; SLC9A1, solute carrier family 9 (Na+/H+ antiporter); SMAD3, SMAD, mothers against DPP homolog 3 (Drosophila); SMARCA3, SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 3; TAZ, tafazzin; TCF2, transcription factor 2, hepatic; TCN2, transcobalamin II; TGFB1, transforming growth factor, beta 1; TGFB2, transforming growth factor, beta 2; TGFB3, transforming growth factor, beta 3; TGFBR2, transforming growth factor, beta receptor II; TGFBR3, transforming growth factor, beta receptor III; TIMP2, tissue inhibitor of metalloproteinase 2; TIMP3, tissue inhibitor of metalloproteinase 3; TM4SF4, transmembrane 4 superfamily member 4; TNFRSF1A, tumor necrosis factor receptor 1 precursor; TNFSF6/FASLG, tumor necrosis factor (ligand) superfamily, member 6; TSC22 (TGFB1I4), transforming growth factor beta 1–induced transcript 4; UBA52, ubiquitin A-52 residue ribosomal protein fusion product 1; UNC13B, unc-13 homolog B (C. elegans); USF1, upstream transcription factor 1; USF2, upstream transcription factor 2; UTS2, urotensin 2; VEGF, vascular endothelial growth factor; VEGFR2 (KDR), kinase insert domain receptor.

TABLE 1

Candidate genes (n = 115) for diabetic nephropathy (DN) tested for linkage disequilibrium (LD)

Functional categoryGenes (n = 83) not tested previously for LD with DNGenes (n = 32) tested by others for association or linkage with DN
Glomerular basement membrane and mesangial matrix components and their metabolism; cell adhesion CD36 (58); COL1A1 (5961); COL4A2 (60,61); COL4A3 (60,61); COL4A4 (60,61); FBLN1 (11); FBN1*; FN1 (62); HSPG1/SDC2 (62); ICAM1 (63,64); ITGA1 (65); ITGA3 (65); LAMA4*; LAMB1*; LAMC1*; LAMC2*; MMP1 (11,66); MMP2 (11); MMP3 (11,66); NID*; OPN/SPP1 (58); SELE (67); TIMP2 (62); TIMP3 (62COL4A1 (18,19); HSPG2 (68,69); MMP9 (35,36); NPHS1 (27,70,71); SELL (72
Glucose metabolism and transport GLUT2/SLC2A2* AKR1B1 (4551); GFPT2 (73); GLUT1/SLC2A1 (7476
Blood pressure regulation and the renin-angiotensin system EDN1 (77,78); EDN2 (79); EDN3 (79); REN*; SAH (80); UTS2 (81ACE (3744); AGT (4042,82,83); AGTR1 (2024); NPPA (8486
Cytokines, growth factors, and receptors ACVR2 (11); BMP2 (11,71); BMP7 (11,87,88); CCL2 (89); CTGF (11,62,90,91); EGF (11); GH1 (62,92); IGF1 (62,9294); IGF1R (95); IL10*; LTBP1 (96); PDGFB (62,97); PDGFRB (97); TGFB2*; TGFB3*; TGFBR2 (98); TGFBR3*; TNFRSF1A*; TNFSF6/FASLG (11,99); VEGF (11,71,100,101CCR5 (102); IL1A (103105); IL1B (103105); IL1R1 (103105); IL1RN (103105,106); NRP1 (27); TGFB1 (93, 107109
Lipid metabolism APOC2*; APOC4* APOE (25,5256); LPL (25,55,110
Protein and amino acid metabolism CTSD (111); CTSL*; ECE1*; SGK (112); UBA52 (113MTHFR (114116); NOS3 (117121
Nucleic acid metabolism ANG (10,62,122ENPP/PC-1 (123126
Transcription factors and regulatory and signaling molecules AXL (127); EDNRA (128,129); EDNRB*; FOS*; GAS6 (127); MIG6 (130); NFKB1 (89); PRKCA (131,132); SMAD3 (133); UNC13B (134); USF1*; USF2*; VEGFR/KDR (11BDKRB2 (135137); CNOT4/D7S500 (8); HNF1B/TCF2 (2832); PPARG (138,139); PRKCB1 (26,93); TSC22 (140
Electron transport CAT (141); NOX4 (142p22phox/CYBA (33,34,142
Transport function AQP1 (71,143); SLC9A1 (93,144,145); SLC12A3 (146); TCN2 (147 
Miscellaneous BCL2 (11,148150); GPX1 (141,151); GREM1/CKTSF1B1 (11,152); HSD3B1 (58); LGALS3 (11CALD1 (153
Functional categoryGenes (n = 83) not tested previously for LD with DNGenes (n = 32) tested by others for association or linkage with DN
Glomerular basement membrane and mesangial matrix components and their metabolism; cell adhesion CD36 (58); COL1A1 (5961); COL4A2 (60,61); COL4A3 (60,61); COL4A4 (60,61); FBLN1 (11); FBN1*; FN1 (62); HSPG1/SDC2 (62); ICAM1 (63,64); ITGA1 (65); ITGA3 (65); LAMA4*; LAMB1*; LAMC1*; LAMC2*; MMP1 (11,66); MMP2 (11); MMP3 (11,66); NID*; OPN/SPP1 (58); SELE (67); TIMP2 (62); TIMP3 (62COL4A1 (18,19); HSPG2 (68,69); MMP9 (35,36); NPHS1 (27,70,71); SELL (72
Glucose metabolism and transport GLUT2/SLC2A2* AKR1B1 (4551); GFPT2 (73); GLUT1/SLC2A1 (7476
Blood pressure regulation and the renin-angiotensin system EDN1 (77,78); EDN2 (79); EDN3 (79); REN*; SAH (80); UTS2 (81ACE (3744); AGT (4042,82,83); AGTR1 (2024); NPPA (8486
Cytokines, growth factors, and receptors ACVR2 (11); BMP2 (11,71); BMP7 (11,87,88); CCL2 (89); CTGF (11,62,90,91); EGF (11); GH1 (62,92); IGF1 (62,9294); IGF1R (95); IL10*; LTBP1 (96); PDGFB (62,97); PDGFRB (97); TGFB2*; TGFB3*; TGFBR2 (98); TGFBR3*; TNFRSF1A*; TNFSF6/FASLG (11,99); VEGF (11,71,100,101CCR5 (102); IL1A (103105); IL1B (103105); IL1R1 (103105); IL1RN (103105,106); NRP1 (27); TGFB1 (93, 107109
Lipid metabolism APOC2*; APOC4* APOE (25,5256); LPL (25,55,110
Protein and amino acid metabolism CTSD (111); CTSL*; ECE1*; SGK (112); UBA52 (113MTHFR (114116); NOS3 (117121
Nucleic acid metabolism ANG (10,62,122ENPP/PC-1 (123126
Transcription factors and regulatory and signaling molecules AXL (127); EDNRA (128,129); EDNRB*; FOS*; GAS6 (127); MIG6 (130); NFKB1 (89); PRKCA (131,132); SMAD3 (133); UNC13B (134); USF1*; USF2*; VEGFR/KDR (11BDKRB2 (135137); CNOT4/D7S500 (8); HNF1B/TCF2 (2832); PPARG (138,139); PRKCB1 (26,93); TSC22 (140
Electron transport CAT (141); NOX4 (142p22phox/CYBA (33,34,142
Transport function AQP1 (71,143); SLC9A1 (93,144,145); SLC12A3 (146); TCN2 (147 
Miscellaneous BCL2 (11,148150); GPX1 (141,151); GREM1/CKTSF1B1 (11,152); HSD3B1 (58); LGALS3 (11CALD1 (153

Underline indicates nominally significant results in this study.

*

To our knowledge, not previously proposed as candidate gene for diabetic nephropathy. For a complete list of gene abbreviations, see the appendix.

TABLE 2

Candidate genes (n = 12) for diabetic nephropathy not previously tested; nominal P < 0.05 for at least one marker

Gene symbolLocusAssay IDdbSNP IDLocationAllelesTNot TTotal%Tχ2P
AQP1 7p14.3 hCV2973378 rs763422 5.1 kb 5′ T/C 33 31 64 0.52 0.1  
  D7S526  2.6 kb 5′  125 bp 38 21 59 0.64 4.9 0.027 
  hCV2973385 rs1049305 3′-UTR G/C 27 24 51 0.53 0.2  
BCL2 18q21.33 hCV7905447 rs1564483 3′-UTR C/T 31 29 60 0.52 0.1  
  hCV7905342 rs3943258 Intron T/C 36 30 66 0.55 0.5  
  hCV8685764 rs1481031 Intron C/T 39 19 58 0.67 6.9 0.009 
  hCV1408500 rs12457700 Intron C/T 36 16 52 0.69 7.7 0.006 
  hCV1408502 rs2062011 Intron A/T 42 17 59 0.71 10.6 0.001 
  hCV1408482 rs8083946 Intron G/A 40 27 67 0.60 2.5  
  hCV1728132 rs8084922 Intron G/C 46 31 77 0.60 2.9  
  hCV8687299 rs1381548 Intron G/A 33 25 58 0.57 1.1  
  hCV2855833 rs11152377 Intron C/T 32 27 59 0.54 0.4  
  hCV2855835 rs2551402 4.1 kb 5′ C/A 38 30 68 0.56 0.9  
CAT 11p13 hCV1883211 rs1049982 5′-UTR C/T 43 21 64 0.67 7.6 0.006 
  hCV3102895 rs560807 Intron A/T 44 27 71 0.62 4.1 0.044 
GPX1 3p21.3 hCV7912052 rs1800668 5′-UTR A/G 29 14 43 0.67 5.2 0.022 
IGF1 12q23.2 hCV2801121 rs2946834 1.9 kb 3′ A/G 24 22 46 0.52 0.1  
  hCV2801103 rs972936 Intron T/C 28 28 56 0.50 0.0  
  hCV346219 rs10735380 Intron A/G 30 27 57 0.53 0.2  
  MFD1  0.7 kb 5′  209 bp 15 28 43 0.35 3.9 0.047 
LAMA4 6q21 hCV2462170 rs1050353 Val(A)1713Val(T) A/T 30 29 59 0.51 0.0  
  hCV2462178 rs969139 Intron C/T 44 32 76 0.58 1.9  
  hCV2462186 rs3734287 Intron C/T 37 19 56 0.66 5.8 0.016 
  hCV2462219 rs11153344 Intron A/G 35 31 66 0.53 0.2  
  LAMA4-STRP1  Intron  119 bp 27 15 42 0.64 3.4  
  hCV2462251 rs1050348 His(C)491Tyr(T) A/G 28 24 52 0.54 0.3  
  hCV2462280 rs3777928 Intron A/C 33 30 63 0.52 0.1  
  hCV2462319 rs2157547 Intron C/G 20 18 38 0.53 0.1  
  hCV11903282 rs1894682 Intron A/G 33 23 56 0.59 1.8  
LAMC1 1q25.3 hCV505167 rs10737236 4 kb 5′ C/T 45 30 75 0.60 3.0  
  hCV26124236 rs10911194 Ala(C)58Ala(T) A/G 46 31 77 0.60 2.9  
  hCV9066112 rs10797819 Intron G/A 46 28 74 0.62 4.4 0.036 
  hCV1770066 rs4652775 Intron A/T 45 29 74 0.61 3.5  
  hCV3127531 rs2296288 Cys(C)182Cys(T) T/C 46 29 75 0.61 3.9 0.050 
  hCV11632431 rs7556132 Ile(A)458Val(G) A/G 47 29 76 0.62 4.3 0.039 
  hCV3127590 rs2296292 Ala(C)592Ala(A) A/C 45 28 73 0.62 4.0 0.047 
  hCV3127518 rs20557 Asn(C)837Asn(T) T/C 46 27 73 0.63 4.9 0.026 
  hCV3127512 rs7410919 Leu888Pro T/C 47 29 76 0.62 4.3 0.039 
  LAMC1-STRP1  Intron  215 bp 31 20 51 0.61 2.4  
  hCV3127470 rs4651146 Arg(C)1376Arg(T) T/C 42 28 70 0.60 2.8  
  hCV3127469 rs3818419 Ala(A)1433Ala(G) G/A 33 32 65 0.51 0.0  
  hCV3127459 rs1547715 3′-UTR A/G 47 30 77 0.61 3.8  
SMAD3 15q22.33 hCV9707890 rs1498506 Intron A/C 28 18 46 0.61 2.2  
  hCV2113018 rs4776890 Intron C/G 40 24 64 0.63 4.0 0.046 
  hCV11306173 rs12594610 Intron G/A 36 20 56 0.64 4.6 0.033 
  hCV2112975 rs11631380 Intron C/T 32 19 51 0.63 3.3  
  hCV2112965 rs745103 Intron A/G 29 29 58 0.50 0.0  
  hCV1044749 rs731874 Intron A/G 31 23 54 0.57 1.2  
  hCV2112907 rs2289791 Intron G/T 29 19 48 0.60 2.1  
TGFBR2 3p24.1 hCV3158972 rs13081419 Intron A/C 41 31 72 0.57 1.4  
  hCV11565979 rs1431131 Intron A/T 34 30 64 0.53 0.3  
  hCV1612549 rs1155705 Intron A/G 34 32 66 0.52 0.1  
  hCV972343 rs1078985 Intron A/G 24 22 46 0.52 0.1  
  hCV8778179 rs995435 Intron A/G 27 21 48 0.56 0.8  
  hCV1612506 rs6792117 Intron A/G 41 23 64 0.64 5.1 0.024 
  hCV1612480 rs744751 2.8 kb 3′ A/G 29 25 54 0.54 0.3  
TGFBR3 1p22.1 hCV945103 rs284878 Thr(C)746Thr(T) A/G 10 15 0.67 1.7  
  hCV1931721 rs1805113 Phe(C)673Phe(T) A/G 38 30 68 0.56 0.9  
  hCV3130156 rs284180 Intron A/C 38 32 70 0.54 0.5  
  hCV3130147 rs284190 Intron A/T 37 29 66 0.56 1.0  
  hCV3130125 rs12756024 Intron A/C 42 23 65 0.65 5.6 0.018 
  hCV11643684 rs5019497 Intron A/C 38 34 72 0.53 0.2  
  hCV11643667 rs10783040 Intron A/G 38 28 66 0.58 1.5  
  hCV1931638 rs11165595 Intron A/G 34 30 64 0.53 0.3  
  hCV3130092 rs1192524 Intron A/G 32 32 64 0.50 0.0  
  hCV3181378 rs7550034 Intron A/G 37 35 72 0.51 0.1  
  D1S1588  Intron  132 bp 17 28 45 0.38 2.7  
TIMP3 22q12.3 hCV8712827 rs135025 Intron A/G 38 26 64 0.59 2.3  
  D22S280  Intron  214 bp 32 18 50 0.64 3.9 0.048 
  hCV3294872 rs242075 Intron A/G 39 37 76 0.51 0.1  
  hCV8712964 rs1065314 3′-UTR T/C 26 25 51 0.51 0.0  
USF1 1q23.3 hCV1459759 rs3737787 3′-UTR A/G 25 24 49 0.51 0.0  
  rs2073658 rs2073658 Intron C/T 22 19 41 0.54 0.2  
  hCV15949520 rs2073656 Intron C/G 22 21 43 0.51 0.0  
  hCV1839183 rs2516839 5′-UTR C/T 45 28 73 0.62 4.0 0.047 
Gene symbolLocusAssay IDdbSNP IDLocationAllelesTNot TTotal%Tχ2P
AQP1 7p14.3 hCV2973378 rs763422 5.1 kb 5′ T/C 33 31 64 0.52 0.1  
  D7S526  2.6 kb 5′  125 bp 38 21 59 0.64 4.9 0.027 
  hCV2973385 rs1049305 3′-UTR G/C 27 24 51 0.53 0.2  
BCL2 18q21.33 hCV7905447 rs1564483 3′-UTR C/T 31 29 60 0.52 0.1  
  hCV7905342 rs3943258 Intron T/C 36 30 66 0.55 0.5  
  hCV8685764 rs1481031 Intron C/T 39 19 58 0.67 6.9 0.009 
  hCV1408500 rs12457700 Intron C/T 36 16 52 0.69 7.7 0.006 
  hCV1408502 rs2062011 Intron A/T 42 17 59 0.71 10.6 0.001 
  hCV1408482 rs8083946 Intron G/A 40 27 67 0.60 2.5  
  hCV1728132 rs8084922 Intron G/C 46 31 77 0.60 2.9  
  hCV8687299 rs1381548 Intron G/A 33 25 58 0.57 1.1  
  hCV2855833 rs11152377 Intron C/T 32 27 59 0.54 0.4  
  hCV2855835 rs2551402 4.1 kb 5′ C/A 38 30 68 0.56 0.9  
CAT 11p13 hCV1883211 rs1049982 5′-UTR C/T 43 21 64 0.67 7.6 0.006 
  hCV3102895 rs560807 Intron A/T 44 27 71 0.62 4.1 0.044 
GPX1 3p21.3 hCV7912052 rs1800668 5′-UTR A/G 29 14 43 0.67 5.2 0.022 
IGF1 12q23.2 hCV2801121 rs2946834 1.9 kb 3′ A/G 24 22 46 0.52 0.1  
  hCV2801103 rs972936 Intron T/C 28 28 56 0.50 0.0  
  hCV346219 rs10735380 Intron A/G 30 27 57 0.53 0.2  
  MFD1  0.7 kb 5′  209 bp 15 28 43 0.35 3.9 0.047 
LAMA4 6q21 hCV2462170 rs1050353 Val(A)1713Val(T) A/T 30 29 59 0.51 0.0  
  hCV2462178 rs969139 Intron C/T 44 32 76 0.58 1.9  
  hCV2462186 rs3734287 Intron C/T 37 19 56 0.66 5.8 0.016 
  hCV2462219 rs11153344 Intron A/G 35 31 66 0.53 0.2  
  LAMA4-STRP1  Intron  119 bp 27 15 42 0.64 3.4  
  hCV2462251 rs1050348 His(C)491Tyr(T) A/G 28 24 52 0.54 0.3  
  hCV2462280 rs3777928 Intron A/C 33 30 63 0.52 0.1  
  hCV2462319 rs2157547 Intron C/G 20 18 38 0.53 0.1  
  hCV11903282 rs1894682 Intron A/G 33 23 56 0.59 1.8  
LAMC1 1q25.3 hCV505167 rs10737236 4 kb 5′ C/T 45 30 75 0.60 3.0  
  hCV26124236 rs10911194 Ala(C)58Ala(T) A/G 46 31 77 0.60 2.9  
  hCV9066112 rs10797819 Intron G/A 46 28 74 0.62 4.4 0.036 
  hCV1770066 rs4652775 Intron A/T 45 29 74 0.61 3.5  
  hCV3127531 rs2296288 Cys(C)182Cys(T) T/C 46 29 75 0.61 3.9 0.050 
  hCV11632431 rs7556132 Ile(A)458Val(G) A/G 47 29 76 0.62 4.3 0.039 
  hCV3127590 rs2296292 Ala(C)592Ala(A) A/C 45 28 73 0.62 4.0 0.047 
  hCV3127518 rs20557 Asn(C)837Asn(T) T/C 46 27 73 0.63 4.9 0.026 
  hCV3127512 rs7410919 Leu888Pro T/C 47 29 76 0.62 4.3 0.039 
  LAMC1-STRP1  Intron  215 bp 31 20 51 0.61 2.4  
  hCV3127470 rs4651146 Arg(C)1376Arg(T) T/C 42 28 70 0.60 2.8  
  hCV3127469 rs3818419 Ala(A)1433Ala(G) G/A 33 32 65 0.51 0.0  
  hCV3127459 rs1547715 3′-UTR A/G 47 30 77 0.61 3.8  
SMAD3 15q22.33 hCV9707890 rs1498506 Intron A/C 28 18 46 0.61 2.2  
  hCV2113018 rs4776890 Intron C/G 40 24 64 0.63 4.0 0.046 
  hCV11306173 rs12594610 Intron G/A 36 20 56 0.64 4.6 0.033 
  hCV2112975 rs11631380 Intron C/T 32 19 51 0.63 3.3  
  hCV2112965 rs745103 Intron A/G 29 29 58 0.50 0.0  
  hCV1044749 rs731874 Intron A/G 31 23 54 0.57 1.2  
  hCV2112907 rs2289791 Intron G/T 29 19 48 0.60 2.1  
TGFBR2 3p24.1 hCV3158972 rs13081419 Intron A/C 41 31 72 0.57 1.4  
  hCV11565979 rs1431131 Intron A/T 34 30 64 0.53 0.3  
  hCV1612549 rs1155705 Intron A/G 34 32 66 0.52 0.1  
  hCV972343 rs1078985 Intron A/G 24 22 46 0.52 0.1  
  hCV8778179 rs995435 Intron A/G 27 21 48 0.56 0.8  
  hCV1612506 rs6792117 Intron A/G 41 23 64 0.64 5.1 0.024 
  hCV1612480 rs744751 2.8 kb 3′ A/G 29 25 54 0.54 0.3  
TGFBR3 1p22.1 hCV945103 rs284878 Thr(C)746Thr(T) A/G 10 15 0.67 1.7  
  hCV1931721 rs1805113 Phe(C)673Phe(T) A/G 38 30 68 0.56 0.9  
  hCV3130156 rs284180 Intron A/C 38 32 70 0.54 0.5  
  hCV3130147 rs284190 Intron A/T 37 29 66 0.56 1.0  
  hCV3130125 rs12756024 Intron A/C 42 23 65 0.65 5.6 0.018 
  hCV11643684 rs5019497 Intron A/C 38 34 72 0.53 0.2  
  hCV11643667 rs10783040 Intron A/G 38 28 66 0.58 1.5  
  hCV1931638 rs11165595 Intron A/G 34 30 64 0.53 0.3  
  hCV3130092 rs1192524 Intron A/G 32 32 64 0.50 0.0  
  hCV3181378 rs7550034 Intron A/G 37 35 72 0.51 0.1  
  D1S1588  Intron  132 bp 17 28 45 0.38 2.7  
TIMP3 22q12.3 hCV8712827 rs135025 Intron A/G 38 26 64 0.59 2.3  
  D22S280  Intron  214 bp 32 18 50 0.64 3.9 0.048 
  hCV3294872 rs242075 Intron A/G 39 37 76 0.51 0.1  
  hCV8712964 rs1065314 3′-UTR T/C 26 25 51 0.51 0.0  
USF1 1q23.3 hCV1459759 rs3737787 3′-UTR A/G 25 24 49 0.51 0.0  
  rs2073658 rs2073658 Intron C/T 22 19 41 0.54 0.2  
  hCV15949520 rs2073656 Intron C/G 22 21 43 0.51 0.0  
  hCV1839183 rs2516839 5′-UTR C/T 45 28 73 0.62 4.0 0.047 

T, number of transmissions in the TDT analysis. For a complete list of gene abbreviations, see the appendix.

TABLE 3

Candidate genes (n = 71) for diabetic nephropathy not previously tested; nominal P > 0.05 for all markers

Gene symbolTotal number of SNPs genotypedResults for most significant SNP
TNot TTotal%Tχ2
ACVR2 33 27 60 0.55 0.6 
ANG 30 24 54 0.56 0.7 
APOC2 32 26 58 0.55 0.6 
APOC4 29 27 56 0.52 0.1 
AXL 33 22 55 0.60 2.2 
BMP2 46 32 78 0.59 2.5 
BMP7 42 27 69 0.61 3.3 
CCL2 35 28 63 0.56 0.8 
CD36 41 28 69 0.59 2.4 
COL1A1 25 16 41 0.61 2.0 
COL4A2 41 26 67 0.61 3.4 
COL4A3 4* 39 29 68 0.57 1.5 
COL4A4 36 30 66 0.55 0.5 
CTGF 29 26 55 0.53 0.2 
CTSD 40 37 77 0.52 0.1 
CTSL 34 31 65 0.52 0.1 
ECE1 2* 30 26 56 0.54 0.3 
EDN1 23 20 43 0.54 0.2 
EDN2 0* 22 31 53 0.42 1.5 
EDN3 34 31 65 0.52 0.1 
EDNRA 5* 32 28 60 0.53 0.3 
EDNRB 2* 32 24 56 0.57 1.1 
EGF 4* 31 25 56 0.55 0.6 
FBLN1 41 35 76 0.54 0.5 
FBN1 31 23 54 0.57 1.2 
FN1 33 26 59 0.56 0.8 
FOS 33 29 62 0.53 0.3 
GAS6 27 20 47 0.57 1.0 
GH1 33 25 58 0.57 1.1 
GLUT2/SLC2A2 1* 25 24 49 0.51 0.0 
GREMLIN/CKTSF1B1 35 34 69 0.51 0.0 
HSD3B1 31 30 61 0.51 0.0 
HSPG1/SDC2 4* 25 37 62 0.40 2.3 
ICAM1 47 34 81 0.58 2.1 
IGF1R 8* 32 24 56 0.57 1.1 
IL10 27 26 53 0.51 0.0 
ITGA1 37 27 64 0.58 1.6 
ITGA3 1* 23 34 57 0.40 2.1 
LAMB1 4* 27 16 43 0.63 2.8 
LAMC2 45 29 74 0.61 3.5 
LGALS3 37 27 64 0.58 1.6 
LTBP1 41 33 74 0.55 0.9 
MIG6 41 31 72 0.57 1.4 
MMP1 40 25 65 0.62 3.5 
MMP2 35 33 68 0.52 0.1 
MMP3 39 33 72 0.54 0.5 
NFKB1 30 19 49 0.61 2.5 
NID 32 25 57 0.56 0.9 
NOX4 34 26 60 0.57 1.1 
PDGFB 2* 18 26 44 0.41 1.5 
PDGFRB 40 27 67 0.60 2.5 
PRKCA 11 31 20 51 0.61 2.4 
REN 29 26 55 0.53 0.2 
SAH 24 24 48 0.50 
SELE 31 29 60 0.52 0.1 
SGK 36 29 65 0.55 0.8 
SLC9A1 2* 25 35 60 0.42 1.7 
SLC12A3 39 29 68 0.57 1.5 
SPP1/OPN 26 25 51 0.51 0.0 
TCN2 30 23 53 0.57 0.9 
TGFB2 34 30 64 0.53 0.3 
TGFB3 27 23 50 0.54 0.3 
  Not T Total %T χ2 
TIMP2 34 28 62 0.55 0.6 
TNFRSF1A 37 29 66 0.56 1.0 
TNFSF6/FASLG 39 35 74 0.53 0.2 
UBA52 36 35 71 0.51 0.0 
UNC13B 33 27 60 0.55 0.6 
USF2 20 16 36 0.56 0.4 
UTS2 37 29 66 0.56 1.0 
VEGF 1* 38 32 70 0.54 0.5 
VEGFR2/KDR 31 23 54 0.57 1.2 
Gene symbolTotal number of SNPs genotypedResults for most significant SNP
TNot TTotal%Tχ2
ACVR2 33 27 60 0.55 0.6 
ANG 30 24 54 0.56 0.7 
APOC2 32 26 58 0.55 0.6 
APOC4 29 27 56 0.52 0.1 
AXL 33 22 55 0.60 2.2 
BMP2 46 32 78 0.59 2.5 
BMP7 42 27 69 0.61 3.3 
CCL2 35 28 63 0.56 0.8 
CD36 41 28 69 0.59 2.4 
COL1A1 25 16 41 0.61 2.0 
COL4A2 41 26 67 0.61 3.4 
COL4A3 4* 39 29 68 0.57 1.5 
COL4A4 36 30 66 0.55 0.5 
CTGF 29 26 55 0.53 0.2 
CTSD 40 37 77 0.52 0.1 
CTSL 34 31 65 0.52 0.1 
ECE1 2* 30 26 56 0.54 0.3 
EDN1 23 20 43 0.54 0.2 
EDN2 0* 22 31 53 0.42 1.5 
EDN3 34 31 65 0.52 0.1 
EDNRA 5* 32 28 60 0.53 0.3 
EDNRB 2* 32 24 56 0.57 1.1 
EGF 4* 31 25 56 0.55 0.6 
FBLN1 41 35 76 0.54 0.5 
FBN1 31 23 54 0.57 1.2 
FN1 33 26 59 0.56 0.8 
FOS 33 29 62 0.53 0.3 
GAS6 27 20 47 0.57 1.0 
GH1 33 25 58 0.57 1.1 
GLUT2/SLC2A2 1* 25 24 49 0.51 0.0 
GREMLIN/CKTSF1B1 35 34 69 0.51 0.0 
HSD3B1 31 30 61 0.51 0.0 
HSPG1/SDC2 4* 25 37 62 0.40 2.3 
ICAM1 47 34 81 0.58 2.1 
IGF1R 8* 32 24 56 0.57 1.1 
IL10 27 26 53 0.51 0.0 
ITGA1 37 27 64 0.58 1.6 
ITGA3 1* 23 34 57 0.40 2.1 
LAMB1 4* 27 16 43 0.63 2.8 
LAMC2 45 29 74 0.61 3.5 
LGALS3 37 27 64 0.58 1.6 
LTBP1 41 33 74 0.55 0.9 
MIG6 41 31 72 0.57 1.4 
MMP1 40 25 65 0.62 3.5 
MMP2 35 33 68 0.52 0.1 
MMP3 39 33 72 0.54 0.5 
NFKB1 30 19 49 0.61 2.5 
NID 32 25 57 0.56 0.9 
NOX4 34 26 60 0.57 1.1 
PDGFB 2* 18 26 44 0.41 1.5 
PDGFRB 40 27 67 0.60 2.5 
PRKCA 11 31 20 51 0.61 2.4 
REN 29 26 55 0.53 0.2 
SAH 24 24 48 0.50 
SELE 31 29 60 0.52 0.1 
SGK 36 29 65 0.55 0.8 
SLC9A1 2* 25 35 60 0.42 1.7 
SLC12A3 39 29 68 0.57 1.5 
SPP1/OPN 26 25 51 0.51 0.0 
TCN2 30 23 53 0.57 0.9 
TGFB2 34 30 64 0.53 0.3 
TGFB3 27 23 50 0.54 0.3 
  Not T Total %T χ2 
TIMP2 34 28 62 0.55 0.6 
TNFRSF1A 37 29 66 0.56 1.0 
TNFSF6/FASLG 39 35 74 0.53 0.2 
UBA52 36 35 71 0.51 0.0 
UNC13B 33 27 60 0.55 0.6 
USF2 20 16 36 0.56 0.4 
UTS2 37 29 66 0.56 1.0 
VEGF 1* 38 32 70 0.54 0.5 
VEGFR2/KDR 31 23 54 0.57 1.2 

For detailed results, see supplemental Table 2 in the online appendix. T, number of transmissions in the TDT analysis.

*

One STRP or variable number tandem repeat was genotyped in addition to the number of SNPs indicated. For a complete list of gene abbreviations, see the appendix.

TABLE 4

Candidate genes (n = 11) for diabetic nephropathy previously studied by others

Gene symbolAssay IDdbSNP IDLocationAlleles
TNot TTotal%Tχ2PReference
ACE hCV1247701 rs4293 Intron A/G 39 33 72 0.54 0.5  (3743
 hCV1247713 rs4329 Intron A/G 37 32 69 0.54 0.4   
 in/del  Intron 16-in/del  del 38 31 69 0.55 0.7  (22,3744
 hCV1247681 rs4267385 Intron C/T 31 30 61 0.51 0.0   
AGTR1 region rs1492103 rs1492103 AGTR1-intron C/T 30 30 60 0.50 0.0   
 rs5182 rs5182 AGTR1-Leu(C)191Leu(T) C/T 32 26 58 0.55 0.6   
 rs5186 rs5186 AGTR1-A1166C A/C 29 19 48 0.60 2.1  (2024
 rs427832 rs427832 Intergenic C/T 23 20 43 0.54 0.2   
 ATCA  9.3kb 5′ of AGTR1  38 34 72 0.53 0.2   
 hCV9146233 rs1845413 CPA3-intron G/A 28 23 51 0.55 0.5   
 hCV8759101 rs812249 SMARCA3-Thr(A)303Thr(G) C/T 23 21 44 0.52 0.1   
 hCV1732626 rs6440589 HPS3-Gln(A)498Gln(G) G/A 31 19 50 0.62 2.9   
 D3S1308  573 kb 5′ of AGTR1  106 bp 17 42 59 0.29 10.6 0.001 (20
     108 bp 47 25 72 0.65 6.7 0.009  
 hCV2041187 rs2293418 Intergenic A/G 43 28 71 0.61 3.2   
 hCV3201872 N/A Intergenic G/A 22 20 42 0.52 0.1   
 hCV265602 N/A TM4SF4-intron G/A 35 25 60 0.58 1.7   
 hCV2726141 N/A TAZ-intron T/G 27 19 46 0.59 1.4   
 rs1344816 rs1344816 TAZ-intron T/G 31 21 52 0.60 1.9   
 hCV9148272 rs6807742 TAZ-intron A/T 24 24 48 0.50 0.0   
 hCV1794446 rs1002896 Intergenic A/G 27 23 50 0.540 0.3   
AKR1B1 rs759853 rs759853 C-106T in 5′-UTR C/T 24 24 48 0.50 0.0  (48,49
 STRP1-AKR1B1  1.9 kb 5′  Z−2 27 22 49 0.55 0.5  (4551
     27 28 55 0.49 0.0   
     Z+2 15 23 0.35 2.1   
APOE APOE RFLP* rs429358 Arg(C)112Cys(T)  ε2 12 14 0.86 7.1  (25,5256
  rs7412 Arg(C)158Cys(T)  ε3 20 30 50 0.40 2.0   
     ε4 19 19 38 0.50 0.0   
COL4A1 hCV1964948 rs1133219 Ala(T)1490Ala(C) G/A 29 26 55 0.53 0.2  (18,19
 hCV3147619 rs2305080 Intron T/C 43 30 73 0.59 2.3   
 afm073we5  Intron  175 bp 30 36 66 0.46 0.5   
 hCV3147628 rs532625 Ala(A)144Ala(T) A/T 33 25 58 0.57 1.1   
 hCV3147652 rs639562 Intron T/C 28 24 52 0.54 0.3   
 hCV3147669 rs614282 Intron T/C 40 17 57 0.72 9.3 0.002  
 hCV3147671 rs679062 Intron C/T 43 15 58 0.74 13.5 0.0002  
 hCV3147675 rs9559749 Intron G/A 29 18 47 0.62 2.6   
 hCV3147696 rs627527 Intron G/A 44 29 73 0.60 3.1   
 hCV1433329 rs12431029 Intron C/T 34 27 61 0.56 0.8   
HNF1B1/TCF2 hCV2559950 rs739753 2.2 kb 3′ T/A 24 16 40 0.60 1.6  (2832
 hCV11415601 rs2688 3′-UTR C/A 43 25 68 0.63 4.8 0.029  
 hCV2559930 rs2269843 Intron G/A 28 18 46 0.61 2.1   
 hCV2559920 rs2285740 Intron C/T 33 32 65 0.51 0.0   
 hCV2559889 rs4430796 Intron C/T 26 25 51 0.51 0.0   
LPL hCV9642885 rs10104051 Intron C/T 28 26 54 0.52 0.1   
 rs285 rs285 Intron C/T 35 33 68 0.52 0.1   
 rs320 rs320 Intron G/T 41 19 60 0.68 8.1 0.005 (25,110
 hCV1843005 rs326 Intron A/G 41 21 62 0.66 6.5 0.011  
 hCV9639448 rs13702 3′-UTR C/T 40 18 58 0.69 8.3 0.004  
MMP9 hCV1414746 rs11697325 8.2 kb 5′ A/G 31 16 47 0.66 4.8 0.029  
 D20S838  5′-UTR  A14 30 26 56 0.54 0.3  (35,36
     A21 24 22 46 0.52 0.1   
 hCV11655953 rs2664538 Gln(A)279Arg(G) A/G 30 20 50 0.60 2.0   
NRP1 hCV347431 rs2247015 Intron T/G 36 35 71 0.51  (27
 hCV346947 rs2474714 Intron G/A 37 35 72 0.51 0.1   
 hCV2738770 rs927099 Intron C/T 39 30 69 0.57 1.2   
 hCV7467750 rs1319013 Intron T/G 35 33 68 0.51 0.1   
 hCV7467760 rs869636 Intron T/C 36 21 57 0.63 4.0 0.047  
 hCV2738721 rs1331326 Intron T/C 41 30 71 0.58 1.7   
 hCV11659809 rs2804495 Intron T/G 42 24 66 0.64 4.9 0.027  
p22phox/ CYBA rs1049255 rs1049255 Ala(C)174Val(T) C/T 33 31 64 0.52 0.1   
 hCV11291909 rs3794622 Intron C/T 35 34 69 0.51 0.0   
 hCV2038 rs4673 His(C)72Tyr(T) C/T 32 17 49 0.65 4.6 0.032 (33,34
PRKCB1 hCV27475914 rs3760106 C-1504T in 5′-UTR C/T 27 19 46 0.59 1.4  (26
 hCV9611559 rs2575390 G-546C in 5′-UTR G/C 29 20 49 0.59 1.6  (26
 hCV2192055 rs3826262 Intron C/T 32 23 55 0.58 1.5   
 hCV11192702 rs9924860 Intron A/C 38 29 67 0.57 1.2   
 hCV11192725 rs3785392 Intron A/G 32 32 64 0.50 0.0   
 hCV9609158 rs916677 Intron T/C 40 29 69 0.58 1.8   
 hCV1936104 rs11865731 Intron A/C 27 21 48 0.56 0.8   
 hCV1936029 rs11644387 Intron A/G 29 17 46 0.63 3.1   
 hCV583834 rs405322 Intron T/G 33 26 59 0.56 0.8   
 hCV583818 rs198200 Intron C/G 30 28 58 0.52 0.1   
 hCV8918943 rs1015408 Intron A/T 30 15 45 0.67 5.0 0.025  
 D16S420  8.9 kb 3′  11 27 30 57 0.47 0.2   
Gene symbolAssay IDdbSNP IDLocationAlleles
TNot TTotal%Tχ2PReference
ACE hCV1247701 rs4293 Intron A/G 39 33 72 0.54 0.5  (3743
 hCV1247713 rs4329 Intron A/G 37 32 69 0.54 0.4   
 in/del  Intron 16-in/del  del 38 31 69 0.55 0.7  (22,3744
 hCV1247681 rs4267385 Intron C/T 31 30 61 0.51 0.0   
AGTR1 region rs1492103 rs1492103 AGTR1-intron C/T 30 30 60 0.50 0.0   
 rs5182 rs5182 AGTR1-Leu(C)191Leu(T) C/T 32 26 58 0.55 0.6   
 rs5186 rs5186 AGTR1-A1166C A/C 29 19 48 0.60 2.1  (2024
 rs427832 rs427832 Intergenic C/T 23 20 43 0.54 0.2   
 ATCA  9.3kb 5′ of AGTR1  38 34 72 0.53 0.2   
 hCV9146233 rs1845413 CPA3-intron G/A 28 23 51 0.55 0.5   
 hCV8759101 rs812249 SMARCA3-Thr(A)303Thr(G) C/T 23 21 44 0.52 0.1   
 hCV1732626 rs6440589 HPS3-Gln(A)498Gln(G) G/A 31 19 50 0.62 2.9   
 D3S1308  573 kb 5′ of AGTR1  106 bp 17 42 59 0.29 10.6 0.001 (20
     108 bp 47 25 72 0.65 6.7 0.009  
 hCV2041187 rs2293418 Intergenic A/G 43 28 71 0.61 3.2   
 hCV3201872 N/A Intergenic G/A 22 20 42 0.52 0.1   
 hCV265602 N/A TM4SF4-intron G/A 35 25 60 0.58 1.7   
 hCV2726141 N/A TAZ-intron T/G 27 19 46 0.59 1.4   
 rs1344816 rs1344816 TAZ-intron T/G 31 21 52 0.60 1.9   
 hCV9148272 rs6807742 TAZ-intron A/T 24 24 48 0.50 0.0   
 hCV1794446 rs1002896 Intergenic A/G 27 23 50 0.540 0.3   
AKR1B1 rs759853 rs759853 C-106T in 5′-UTR C/T 24 24 48 0.50 0.0  (48,49
 STRP1-AKR1B1  1.9 kb 5′  Z−2 27 22 49 0.55 0.5  (4551
     27 28 55 0.49 0.0   
     Z+2 15 23 0.35 2.1   
APOE APOE RFLP* rs429358 Arg(C)112Cys(T)  ε2 12 14 0.86 7.1  (25,5256
  rs7412 Arg(C)158Cys(T)  ε3 20 30 50 0.40 2.0   
     ε4 19 19 38 0.50 0.0   
COL4A1 hCV1964948 rs1133219 Ala(T)1490Ala(C) G/A 29 26 55 0.53 0.2  (18,19
 hCV3147619 rs2305080 Intron T/C 43 30 73 0.59 2.3   
 afm073we5  Intron  175 bp 30 36 66 0.46 0.5   
 hCV3147628 rs532625 Ala(A)144Ala(T) A/T 33 25 58 0.57 1.1   
 hCV3147652 rs639562 Intron T/C 28 24 52 0.54 0.3   
 hCV3147669 rs614282 Intron T/C 40 17 57 0.72 9.3 0.002  
 hCV3147671 rs679062 Intron C/T 43 15 58 0.74 13.5 0.0002  
 hCV3147675 rs9559749 Intron G/A 29 18 47 0.62 2.6   
 hCV3147696 rs627527 Intron G/A 44 29 73 0.60 3.1   
 hCV1433329 rs12431029 Intron C/T 34 27 61 0.56 0.8   
HNF1B1/TCF2 hCV2559950 rs739753 2.2 kb 3′ T/A 24 16 40 0.60 1.6  (2832
 hCV11415601 rs2688 3′-UTR C/A 43 25 68 0.63 4.8 0.029  
 hCV2559930 rs2269843 Intron G/A 28 18 46 0.61 2.1   
 hCV2559920 rs2285740 Intron C/T 33 32 65 0.51 0.0   
 hCV2559889 rs4430796 Intron C/T 26 25 51 0.51 0.0   
LPL hCV9642885 rs10104051 Intron C/T 28 26 54 0.52 0.1   
 rs285 rs285 Intron C/T 35 33 68 0.52 0.1   
 rs320 rs320 Intron G/T 41 19 60 0.68 8.1 0.005 (25,110
 hCV1843005 rs326 Intron A/G 41 21 62 0.66 6.5 0.011  
 hCV9639448 rs13702 3′-UTR C/T 40 18 58 0.69 8.3 0.004  
MMP9 hCV1414746 rs11697325 8.2 kb 5′ A/G 31 16 47 0.66 4.8 0.029  
 D20S838  5′-UTR  A14 30 26 56 0.54 0.3  (35,36
     A21 24 22 46 0.52 0.1   
 hCV11655953 rs2664538 Gln(A)279Arg(G) A/G 30 20 50 0.60 2.0   
NRP1 hCV347431 rs2247015 Intron T/G 36 35 71 0.51  (27
 hCV346947 rs2474714 Intron G/A 37 35 72 0.51 0.1   
 hCV2738770 rs927099 Intron C/T 39 30 69 0.57 1.2   
 hCV7467750 rs1319013 Intron T/G 35 33 68 0.51 0.1   
 hCV7467760 rs869636 Intron T/C 36 21 57 0.63 4.0 0.047  
 hCV2738721 rs1331326 Intron T/C 41 30 71 0.58 1.7   
 hCV11659809 rs2804495 Intron T/G 42 24 66 0.64 4.9 0.027  
p22phox/ CYBA rs1049255 rs1049255 Ala(C)174Val(T) C/T 33 31 64 0.52 0.1   
 hCV11291909 rs3794622 Intron C/T 35 34 69 0.51 0.0   
 hCV2038 rs4673 His(C)72Tyr(T) C/T 32 17 49 0.65 4.6 0.032 (33,34
PRKCB1 hCV27475914 rs3760106 C-1504T in 5′-UTR C/T 27 19 46 0.59 1.4  (26
 hCV9611559 rs2575390 G-546C in 5′-UTR G/C 29 20 49 0.59 1.6  (26
 hCV2192055 rs3826262 Intron C/T 32 23 55 0.58 1.5   
 hCV11192702 rs9924860 Intron A/C 38 29 67 0.57 1.2   
 hCV11192725 rs3785392 Intron A/G 32 32 64 0.50 0.0   
 hCV9609158 rs916677 Intron T/C 40 29 69 0.58 1.8   
 hCV1936104 rs11865731 Intron A/C 27 21 48 0.56 0.8   
 hCV1936029 rs11644387 Intron A/G 29 17 46 0.63 3.1   
 hCV583834 rs405322 Intron T/G 33 26 59 0.56 0.8   
 hCV583818 rs198200 Intron C/G 30 28 58 0.52 0.1   
 hCV8918943 rs1015408 Intron A/T 30 15 45 0.67 5.0 0.025  
 D16S420  8.9 kb 3′  11 27 30 57 0.47 0.2   

Nominal P < 0.05 for at least one marker in TDT analysis (eight genes); nominal P > 0.05 (ACE, AKRIBI, and APOE, see text). T, number of transmissions in the TDT analysis.

*

Conventional restriction fragment–length polymorphism (RFLP) alleles were inferred from the corresponding SNP genotypes. For a complete list of gene abbreviations, see the appendix.

TABLE 5

Candidate genes (n = 21) for diabetic nephropathy previously studied by others; nominal P > 0.05 for all markers

Gene symbolTotal number of SNPs genotypedResults for most significant SNP*
Reference
TNot TTotal%Tχ2
AGT 1 36 33 69 0.522 0.13 (40,41,43,82,83
BDKRB2 29 28 57 0.51 0.0 (135,136
CALD1 36 28 64 0.56 1.0 (153
CCR5 33 32 65 0.51 0.0 (102
D7S500/CNOT4 3 14 26 40 0.35 3.6 (8
ENPP1/PC-1 32 31 63 0.51 0.0 (123126
GFPT2 20 20 40 0.50 0.0 (73
GLUT1/SLC2A1 31 22 53 0.59 1.5 (7476
HSPG2 4 34 21 55 0.62 3.1 (68,69
IL1A 1 19 24 43 0.44 0.6 (103105
IL1B 26 25 51 0.51 0.0 (103105
IL1R1 37 32 69 0.54 0.4 (103105
IL1RN 3 32 19 51 0.63 3.3 (103106
MTHFR 29 21 50 0.58 1.3 (114116
NOS3 23 20 43 0.54 0.2 (117121
NPHS1 0 26 17 43 0.61 1.9 (27
NPPA 33 30 63 0.52 0.1 (8486
PPARG 31 23 54 0.57 1.2 (138,139
SELL 27 26 53 0.51 (72
TGFB1 23 21 44 0.52 0.1 (107,108
TSC22/TGFB1I4 33 33 66 0.50 0.0 (140
Gene symbolTotal number of SNPs genotypedResults for most significant SNP*
Reference
TNot TTotal%Tχ2
AGT 1 36 33 69 0.522 0.13 (40,41,43,82,83
BDKRB2 29 28 57 0.51 0.0 (135,136
CALD1 36 28 64 0.56 1.0 (153
CCR5 33 32 65 0.51 0.0 (102
D7S500/CNOT4 3 14 26 40 0.35 3.6 (8
ENPP1/PC-1 32 31 63 0.51 0.0 (123126
GFPT2 20 20 40 0.50 0.0 (73
GLUT1/SLC2A1 31 22 53 0.59 1.5 (7476
HSPG2 4 34 21 55 0.62 3.1 (68,69
IL1A 1 19 24 43 0.44 0.6 (103105
IL1B 26 25 51 0.51 0.0 (103105
IL1R1 37 32 69 0.54 0.4 (103105
IL1RN 3 32 19 51 0.63 3.3 (103106
MTHFR 29 21 50 0.58 1.3 (114116
NOS3 23 20 43 0.54 0.2 (117121
NPHS1 0 26 17 43 0.61 1.9 (27
NPPA 33 30 63 0.52 0.1 (8486
PPARG 31 23 54 0.57 1.2 (138,139
SELL 27 26 53 0.51 (72
TGFB1 23 21 44 0.52 0.1 (107,108
TSC22/TGFB1I4 33 33 66 0.50 0.0 (140

For detailed results, see supplementary Table 2 in the online appendix. T, number of transmissions in the TDT analysis.

*

Representative values for power were calculated for n = 40 and n = 60. See statistical analysis under research design and methods.

One STRP or VNTR was also genotyped in addition to the number of SNPs indicated. For a complete list of gene abbreviations, see the appendix.

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org.

For a complete list of gene abbreviations, see the appendix.

R.S.S. has received support from National Institutes of Health Grant DK-55227 and U.S. Army Medical Research Grant DAMD17-01-1-0009).

We are grateful to HBDI for recontacting families and to the families who volunteered to participate in this study through HBDI and the Hospital of the University of Pennsylvania.

1.
American Diabetes Association: Diabetic nephropathy (Position Statement).
Diabetes Care
26 (Suppl. 1)
:
S94
–S98,
2003
2.
Krolewski AS, Warram JH, Christlieb AR, Busick EJ, Kahn CR: The changing natural history of nephropathy in type I diabetes.
Am J Med
78
:
785
–794,
1985
3.
Seaquist ER, Goetz FC, Rich S, Barbosa J: Familial clustering of diabetic kidney disease: evidence for genetic susceptibility to diabetic nephropathy.
N Engl J Med
320
:
1161
–1165,
1989
4.
Borch-Johnsen K, Norgaard K, Hommel E, Mathiesen ER, Jensen JS, Deckert T, Parving HH: Is diabetic nephropathy an inherited complication?
Kidney Int
41
:
719
–722,
1992
5.
Quinn M, Angelico MC, Warram JH, Krolewski AS: Familial factors determine the development of diabetic nephropathy in patients with IDDM.
Diabetologia
39
:
940
–945,
1996
6.
Satko SG, Langefeld CD, Daeihagh P, Bowden DW, Rich SS, Freedman BI: Nephropathy in siblings of African Americans with overt type 2 diabetic nephropathy.
Am J Kidney Dis
40
:
489
–494,
2002
7.
Fogarty DG, Hanna LS, Wantman M, Warram JH, Krolewski AS, Rich SS: Segregation analysis of urinary albumin excretion in families with type 2 diabetes.
Diabetes
49
:
1057
–1063,
2000
8.
Imperatore G, Knowler WC, Pettitt DJ, Kobes S, Bennett PH, Hanson RL: Segregation analysis of diabetic nephropathy in Pima Indians.
Diabetes
49
:
1049
–1056,
2000
9.
Doria A, Warram JH, Krolewski AS: Genetic susceptibility to nephropathy in insulin-dependent diabetes: from epidemiology to molecular genetics.
Diabete Metab Rev
11
:
287
–314,
1995
10.
Caramori ML, Mauer M: Diabetes and nephropathy.
Curr Opin Nephrol Hypertens
12
:
273
–282,
2003
11.
Dolan V, Hensey C, Brady HR: Diabetic nephropathy: renal development gone awry?
Pediatr Nephrol
18
:
75
–84,
2003
12.
Lindner TH, Monks D, Wanner C, Berger M: Genetic aspects of diabetic nephropathy.
Kidney Int
84 (Suppl.)
:
S186
–S191,
2003
13.
Spielman RS, McGinnis RE, Ewens WJ: Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM).
Am J Hum Genet
52
:
506
–516,
1993
14.
Lernmark A, Ducat L, Eisenbarth G, Ott J, Permutt MA, Rubenstein P, Spielman R: Family cell lines available for research.
Am J Hum Genet
47
:
1028
–1030,
1990
15.
Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ, Strauss JF, III, Spielman RS, Dunaif A: Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin.
Proc Natl Acad Sci U S A
96
:
8573
–8578,
1999
16.
Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES: Parametric and nonparametric linkage analysis: a unified multipoint approach.
Am J Hum Genet
58
:
1347
–1363,
1996
17.
Uitenbroek DG: SISA-Binomial [article online],
1997
. Available from http://home.clara.net/sisa/binomial.htm. Accessed 3 January 2005
18.
Chen JW, Hansen PM, Tarnow L, Hellgren A, Deckert T, Pociot F: Genetic variation of a collagen IV alpha 1-chain gene polymorphism in Danish insulin-dependent diabetes mellitus (IDDM) patients: lack of association to nephropathy and proliferative retinopathy.
Diabet Med
14
:
143
–147,
1997
19.
Krolewski AS, Tryggvason K, Warram J, Laffel L, Housman D: Diabetic nephropathy and polymorphism in the gene coding for the alpha 1 chain of collagen IV.
Kidney Int
37: 510,
1990
20.
Moczulski DK, Rogus JJ, Antonellis A, Warram JH, Krolewski AS: Major susceptibility locus for nephropathy in type 1 diabetes on chromosome 3q: results of novel discordant sib-pair analysis.
Diabetes
47
:
1164
–1169,
1998
21.
Chowdhury TA, Dyer PH, Kumar S, Gough SC, Gibson SP, Rowe BR, Smith PR, Dronsfield MJ, Marshall SM, Mackin P, Dean JD, Morris PJ, Davies S, Dunger DB, Boulton AJ, Barnett AH, Bain SC: Lack of association of angiotensin II type 1 receptor gene polymorphism with diabetic nephropathy in insulin-dependent diabetes mellitus.
Diabet Med
14
:
837
–840,
1997
22.
Doria A, Onuma T, Warram JH, Krolewski AS: Synergistic effect of angiotensin II type 1 receptor genotype and poor glycaemic control on risk of nephropathy in IDDM.
Diabetologia
40
:
1293
–1299,
1997
23.
Miller JA, Thai K, Scholey JW: Angiotensin II type 1 receptor gene polymorphism and the response to hyperglycemia in early type 1 diabetes.
Diabetes
49
:
1585
–1589,
2000
24.
Savage DA, Feeney SA, Fogarty DG, Maxwell AP: Risk of developing diabetic nephropathy is not associated with synergism between the angiotensin II (type 1) receptor C1166 allele and poor glycaemic control.
Nephrol Dial Transplant
14
:
891
–894,
1999
25.
Orchard TJ, Chang YF, Ferrell RE, Petro N, Ellis DE: Nephropathy in type 1 diabetes: a manifestation of insulin resistance and multiple genetic susceptibilities? Further evidence from the Pittsburgh Epidemiology of Diabetes Complication Study.
Kidney Int
62
:
963
–970,
2002
26.
Araki S, Ng DP, Krolewski B, Wyrwicz L, Rogus JJ, Canani L, Makita Y, Haneda M, Warram JH, Krolewski AS: Identification of a common risk haplotype for diabetic nephropathy at the protein kinase C-beta1 (PRKCB1) gene locus.
J Am Soc Nephrol
14
:
2015
–2024,
2003
27.
Iyengar SK, Fox KA, Schachere M, Manzoor F, Slaughter ME, Covic AM, Orloff SM, Hayden PS, Olson JM, Schelling JR, Sedor JR: Linkage analysis of candidate loci for end-stage renal disease due to diabetic nephropathy.
J Am Soc Nephrol
14
:
S195
–S201,
2003
28.
Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O, Kuroki H, Kasahara T, Iwamoto Y, Bell GI: Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY.
Nat Genet
17
:
384
–385,
1997
29.
Lindner T, Njolstad P, Horikawa Y, Bostad L, Bell G, Sovik O: A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta.
Hum Mol Genet
8
:
2001
–2008,
1999
30.
Carbone I, Cotellessa M, Barella C, Minetti C, Ghiggeri GM, Caridi G, Perfumo F, Lorini R: A novel hepatocyte nuclear factor-1beta (MODY-5) gene mutation in an Italian family with renal dysfunctions and early-onset diabetes.
Diabetologia
45
:
153
–154,
2002
31.
Nishigori H, Yamada S, Kohama T, Tomura H, Sho K, Horikawa Y, Bell GI, Takeuchi T, Takeda J: Frameshift mutation, A263fsinsGG, in the hepatocyte nuclear factor-1beta gene associated with diabetes and renal dysfunction.
Diabetes
47
:
1354
–1355,
1998
32.
Selisko T, Vcelak J, Bendlova B, Graessler J, Schwarz PE, Schulze J: Mutations and intronic variants in the HNF-1 beta gene in a group of German and Czech Caucasians with type 2 diabetes mellitus and progressive diabetic nephropathy.
Exp Clin Endocrinol Diabetes
110
:
145
–147,
2002
33.
Hodgkinson AD, Millward BA, Demaine AG: Association of the p22phox component of NAD(P)H oxidase with susceptibility to diabetic nephropathy in patients with type 1 diabetes.
Diabetes Care
26
:
3111
–3115,
2003
34.
Matsunaga-Irie S, Maruyama T, Yamamoto Y, Motohashi Y, Hirose H, Shimada A, Murata M, Saruta T: Relation between development of nephropathy and the p22phox C242T and receptor for advanced glycation end product G1704T gene polymorphisms in type 2 diabetic patients.
Diabetes Care
27
:
303
–307,
2004
35.
Maeda S, Haneda M, Guo B, Koya D, Hayashi K, Sugimoto T, Isshiki K, Yasuda H, Kashiwagi A, Kikkawa R: Dinucleotide repeat polymorphism of matrix metalloproteinase-9 gene is associated with diabetic nephropathy.
Kidney Int
60
:
1428
–1434,
2001
36.
Hirakawa S, Lange EM, Colicigno CJ, Freedman BI, Rich SS, Bowden DW: Evaluation of genetic variation and association in the matrix metalloproteinase 9 (MMP9) gene in ESRD patients.
Am J Kidney Dis
42
:
133
–142,
2003
37.
Doria A, Warram JH, Krolewski AS: Genetic predisposition to diabetic nephropathy: evidence for a role of the angiotensin I–converting enzyme gene.
Diabetes
43
:
690
–695,
1994
38.
Jacobsen P, Tarnow L, Carstensen B, Hovind P, Poirier O, Parving HH: Genetic variation in the renin-angiotensin system and progression of diabetic nephropathy.
J Am Soc Nephrol
14
:
2843
–2850,
2003
39.
Tarnow L, Gluud C, Parving HH, Nielsen FS: Diabetic nephropathy and the insertion/deletion polymorphism of the angiotensin-converting enzyme gene.
Nephrol Dial Transplant
13
:
1125
–1130,
1998
40.
Lovati E, Richard A, Frey BM, Frey FJ, Ferrari P: Genetic polymorphisms of the renin-angiotensin-aldosterone system in end-stage renal disease.
Kidney Int
60
:
46
–54,
2001
41.
Marre M, Jeunemaitre X, Gallois Y, Rodier M, Chatellier G, Sert C, Dusselier L, Kahal Z, Chaillous L, Halimi S, Muller A, Sackmann H, Bauduceau B, Bled F, Passa P, Alhenc-Gelas F: Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent diabetes: Genetique de la Nephropathie Diabetique (GENEDIAB) study group.
J Clin Invest
99
:
1585
–1595,
1997
42.
Gilbert RE, Krum H, Wilkinson-Berka J, Kelly DJ: The renin-angiotensin system and the long-term complications of diabetes: pathophysiological and therapeutic considerations.
Diabet Med
20
:
607
–621,
2003
43.
Hadjadj S, Belloum R, Bouhanick B, Gallois Y, Guilloteau G, Chatellier G, Alhenc-Gelas F, Marre M: Prognostic value of angiotensin-I converting enzyme I/D polymorphism for nephropathy in type 1 diabetes mellitus: a prospective study.
J Am Soc Nephrol
12
:
541
–549,
2001
44.
Boright AP, Paterson AD, Mirea L, Bull SB, Mowjoodi A, Scherer SW, Zinman B: Genetic variation at the ACE gene is associated with persistent microalbuminuria and severe nephropathy in type 1 diabetes: the DCCT/EDIC Genetics Study.
Diabetes
54
:
1238
–1244,
2005
45.
Heesom AE, Hibberd ML, Millward A, Demaine AG: Polymorphism in the 5′-end of the aldose reductase gene is strongly associated with the development of diabetic nephropathy in type I diabetes.
Diabetes
46
:
287
–291,
1997
46.
Hodgkinson AD, Sondergaard KL, Yang B, Cross DF, Millward BA, Demaine AG: Aldose reductase expression is induced by hyperglycemia in diabetic nephropathy.
Kidney Int
60
:
211
–218,
2001
47.
Dyer PH, Chowdhury TA, Dronsfield MJ, Dunger D, Barnett AH, Bain SC: The 5′-end polymorphism of the aldose reductase gene is not associated with diabetic nephropathy in Caucasian type I diabetic patients.
Diabetologia
42
:
1030
–1031,
1999
48.
Moczulski DK, Scott L, Antonellis A, Rogus JJ, Rich SS, Warram JH, Krolewski AS: Aldose reductase gene polymorphisms and susceptibility to diabetic nephropathy in type 1 diabetes mellitus.
Diabet Med
17
:
111
–118,
2000
49.
Neamat-Allah M, Feeney SA, Savage DA, Maxwell AP, Hanson RL, Knowler WC, El Nahas AM, Plater ME, Shaw J, Boulton AJ, Duff GW, Cox A: Analysis of the association between diabetic nephropathy and polymorphisms in the aldose reductase gene in type 1 and type 2 diabetes mellitus.
Diabet Med
18
:
906
–914,
2001
50.
Ng DP, Conn J, Chung SS, Larkins RG: Aldose reductase (AC)(n) microsatellite polymorphism and diabetic microvascular complications in Caucasian type 1 diabetes mellitus.
Diabetes Res Clin Pract
52
:
21
–27,
2001
51.
Lajer M, Tarnow L, Fleckner J, Hansen BV, Edwards DG, Parving HH, Boel E: Association of aldose reductase gene Z+2 polymorphism with reduced susceptibility to diabetic nephropathy in Caucasian type 1 diabetic patients.
Diabet Med
21
:
867
–873,
2004
52.
Onuma T, Laffel LM, Angelico MC, Krolewski AS: Apolipoprotein E genotypes and risk of diabetic nephropathy.
J Am Soc Nephrol
7
:
1075
–1078,
1996
53.
Chowdhury TA, Dyer PH, Kumar S, Gibson SP, Rowe BR, Davies SJ, Marshall SM, Morris PJ, Gill GV, Feeney S, Maxwell P, Savage D, Boulton AJ, Todd JA, Dunger D, Barnett AH, Bain SC: Association of apolipoprotein epsilon2 allele with diabetic nephropathy in Caucasian subjects with IDDM.
Diabetes
47
:
278
–280,
1998
54.
Araki S, Moczulski DK, Hanna L, Scott LJ, Warram JH, Krolewski AS: APOE polymorphisms and the development of diabetic nephropathy in type 1 diabetes: results of case-control and family-based studies.
Diabetes
49
:
2190
–2195,
2000
55.
Hadjadj S, Gallois Y, Simard G, Bouhanick B, Passa P, Grimaldi A, Drouin P, Tichet J, Marre M: Lack of relationship in long-term type 1 diabetic patients between diabetic nephropathy and polymorphisms in apolipoprotein epsilon, lipoprotein lipase and cholesteryl ester transfer protein.
Nephrol Dial Transplant
15
:
1971
–1976,
2000
56.
Tarnow L, Stehouwer CD, Emeis JJ, Poirier O, Cambien F, Hansen BV, Parving HH: Plasminogen activator inhibitor-1 and apolipoprotein E gene polymorphisms and diabetic angiopathy.
Nephrol Dial Transplant
15
:
625
–630,
2000
57.
Westfall P, Young S:
Resampling-Based Multiple Testing: Examples and Methods for P-Value Adjustment.
New York, John Wiley & Sons,
1993
58.
Susztak K, Bottinger E, Novetsky A, Liang D, Zhu Y, Ciccone E, Wu D, Dunn S, McCue P, Sharma K: Molecular profiling of diabetic mouse kidney reveals novel genes linked to glomerular disease.
Diabetes
53
:
784
–794,
2004
59.
Fukui M, Nakamura T, Ebihara I, Shirato I, Tomino Y, Koide H: ECM gene expression and its modulation by insulin in diabetic rats.
Diabetes
41
:
1520
–1527,
1992
60.
Kim Y, Kleppel MM, Butkowski R, Mauer SM, Wieslander J, Michael AF: Differential expression of basement membrane collagen chains in diabetic nephropathy.
Am J Pathol
138
:
413
–420,
1991
61.
Yagame M, Kim Y, Zhu D, Suzuki D, Eguchi K, Nomoto Y, Sakai H, Groppoli T, Steffes MW, Mauer SM: Differential distribution of type IV collagen chains in patients with diabetic nephropathy in non-insulin-dependent diabetes mellitus.
Nephron
70
:
42
–48,
1995
62.
Mason RM, Wahab NA: Extracellular matrix metabolism in diabetic nephropathy.
J Am Soc Nephrol
14
:
1358
–1373,
2003
63.
Okada S, Shikata K, Matsuda M, Ogawa D, Usui H, Kido Y, Nagase R, Wada J, Shikata Y, Makino H: Intercellular adhesion molecule-1–deficient mice are resistant against renal injury after induction of diabetes.
Diabetes
52
:
2586
–2593,
2003
64.
Guler S, Cakir B, Demirbas B, Yonem A, Odabasi E, Onde U, Aykut O, Gursoy G: Plasma soluble intercellular adhesion molecule 1 levels are increased in type 2 diabetic patients with nephropathy.
Horm Res
58
:
67
–70,
2002
65.
Jin DK, Fish AJ, Wayner EA, Mauer M, Setty S, Tsilibary E, Kim Y, Anderson SS: Distribution of integrin subunits in human diabetic kidneys.
J Am Soc Nephrol
7
:
2636
–2645,
1996
66.
Nakamura T, Fukui M, Ebihara I, Osada S, Tomino Y, Koide H: Abnormal gene expression of matrix metalloproteinases and their inhibitor in glomeruli from diabetic rats.
Ren Physiol Biochem
17
:
316
–325,
1994
67.
Narumi S, Onozato ML, Tojo A, Sakamoto S, Tamatani T: Tissue-specific induction of E-selectin in glomeruli is augmented following diabetes mellitus.
Nephron
89
:
161
–171,
2001
68.
Hansen PM, Chowdhury T, Deckert T, Hellgren A, Bain SC, Pociot F: Genetic variation of the heparan sulfate proteoglycan gene (perlecan gene): association with urinary albumin excretion in IDDM patients.
Diabetes
46
:
1658
–1659,
1997
69.
Liu L, Xiang K, Zheng T, Zhang R, Li M, Wang Y, Lu H, Li J: The heparan sulfate proteoglycan gene polymorphism: association with type 2 diabetic nephropathy in Chinese.
Mol Cell Biochem
245
:
121
–126,
2003
70.
Doublier S, Salvidio G, Lupia E, Ruotsalainen V, Verzola D, Deferrari G, Camussi G: Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II.
Diabetes
52
:
1023
–1030,
2003
71.
Baelde HJ, Eikmans M, Doran PP, Lappin DW, de Heer E, Bruijn JA: Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy.
Am J Kidney Dis
43
:
636
–650,
2004
72.
Kamiuchi K, Hasegawa G, Obayashi H, Kitamura A, Ishii M, Yano M, Kanatsuna T, Yoshikawa T, Nakamura N: Leukocyte-endothelial cell adhesion molecule 1 (LECAM-1) polymorphism is associated with diabetic nephropathy in type 2 diabetes mellitus.
J Diabetes Complicat
16
:
333
–337,
2002
73.
Zhang H, Jia Y, Cooper JJ, Hale T, Zhang Z, Elbein SC: Common variants in glutamine:fructose-6-phosphate amidotransferase 2 (GFPT2) gene are associated with type 2 diabetes, diabetic nephropathy, and increased GFPT2 mRNA levels.
J Clin Endocrinol Metab
89
:
748
–755,
2004
74.
Tarnow L, Grarup N, Hansen T, Parving HH, Pedersen O: Diabetic microvascular complications are not associated with two polymorphisms in the GLUT-1 and PC-1 genes regulating glucose metabolism in Caucasian type 1 diabetic patients.
Nephrol Dial Transplant
16
:
1653
–1656,
2001
75.
Ng DP, Canani L, Araki S, Smiles A, Moczulski D, Warram JH, Krolewski AS: Minor effect of GLUT1 polymorphisms on susceptibility to diabetic nephropathy in type 1 diabetes.
Diabetes
51
:
2264
–2269,
2002
76.
Hodgkinson AD, Millward BA, Demaine AG: Polymorphisms of the glucose transporter (GLUT1) gene are associated with diabetic nephropathy.
Kidney Int
59
:
985
–989,
2001
77.
Itoh Y, Imamura S, Yamamoto K, Ono Y, Nagata M, Kobayashi T, Kato T, Tomita M, Nakai A, Itoh M, Nagasaka A: Changes of endothelin in streptozotocin-induced diabetic rats: effects of an angiotensin converting enzyme inhibitor, enalapril maleate.
J Endocrinol
175
:
233
–239,
2002
78.
Minchenko AG, Stevens MJ, White L, Abatan OI, Komjati K, Pacher P, Szabo C, Obrosova IG: Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation.
FASEB J
17
:
1514
–1516,
2003
79.
Kohan DE: Endothelins in the normal and diseased kidney.
Am J Kidney Dis
29
:
2
–26,
1997
80.
Nabika T, Bonnardeaux A, James M, Julier C, Jeunemaitre X, Corvol P, Lathrop M, Soubrier F: Evaluation of the SA locus in human hypertension.
Hypertension
25
:
6
–13,
1995
81.
Langham RG, Kelly DJ, Gow RM, Zhang Y, Dowling JK, Thomson NM, Gilbert RE: Increased expression of urotensin II and urotensin II receptor in human diabetic nephropathy.
Am J Kidney Dis
44
:
826
–831,
2004
82.
Rogus JJ, Moczulski D, Freire MB, Yang Y, Warram JH, Krolewski AS: Diabetic nephropathy is associated with AGT polymorphism T235: results of a family-based study.
Hypertension
31
:
627
–631,
1998
83.
Doria A, Onuma T, Gearin G, Freire MBS, Warram JH, Krolewski AS: Angiotensinogen polymorphism M235T, hypertension, and nephropathy in insulin-dependent diabetes.
Hypertension
27
:
1134
–1139,
1996
84.
Nannipieri M, Penno G, Pucci L, Colhoun H, Motti C, Bertacca A, Rizzo L, De Giorgio L, Zerbini G, Mangili R, Navalesi R: Pronatriodilatin gene polymorphisms, microvascular permeability, and diabetic nephropathy in type 1 diabetes mellitus.
J Am Soc Nephrol
10
:
1530
–1541,
1999
85.
Schmidt S, Bluthner M, Giessel R, Strojek K, Bergis KH, Grzeszczak W, Ritz E: A polymorphism in the gene for the atrial natriuretic peptide and diabetic nephropathy. Diabetic Nephropathy Study Group.
Nephrol Dial Transplant
13
:
1807
–1810,
1998
86.
Roussel R, Tregouet DA, Hadjadj S, Jeunemaitre X, Marre M: Investigation of the human ANP gene in type 1 diabetic nephropathy: case-control and follow-up studies.
Diabetes
53
:
1394
–1398,
2004
87.
Wang S, Hirschberg R: BMP7 antagonizes TGF-beta–dependent fibrogenesis in mesangial cells.
Am J Physiol Renal Physiol
284
:
F1006
–F1013,
2003
88.
Wang SN, Lapage J, Hirschberg R: Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy.
J Am Soc Nephrol
12
:
2392
–2399,
2001
89.
Mezzano S, Aros C, Droguett A, Burgos ME, Ardiles L, Flores C, Schneider H, Ruiz-Ortega M, Egido J: NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy.
Nephrol Dial Transplant
19
:
2505
–2512,
2004
90.
Wang S, Denichilo M, Brubaker C, Hirschberg R: Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy.
Kidney Int
60
:
96
–105,
2001
91.
Weston BS, Wahab NA, Mason RM: CTGF mediates TGF-beta–induced fibronectin matrix deposition by upregulating active alpha5beta1 integrin in human mesangial cells.
J Am Soc Nephrol
14
:
601
–610,
2003
92.
Cummings EA, Sochett EB, Dekker MG, Lawson ML, Daneman D: Contribution of growth hormone and IGF-I to early diabetic nephropathy in type 1 diabetes.
Diabetes
47
:
1341
–1346,
1998
93.
Mogyorosi A, Ziyadeh FN: Update on pathogenesis, markers and management of diabetic nephropathy.
Curr Opin Nephrol Hypertens
5
:
243
–253,
1996
94.
Lupia E, Elliot SJ, Lenz O, Zheng F, Hattori M, Striker GE, Striker LJ: IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy.
Diabetes
48
:
1638
–1644,
1999
95.
Sugimoto H, Shikata K, Makino H, Ota K, Ota Z: Upregulation of insulin-like growth factor receptor gene in experimental diabetic rat glomeruli.
J Diabetes Complicat
9
:
262
–264,
1995
96.
Huang C, Kim Y, Caramori ML, Fish AJ, Rich SS, Miller ME, Russell GB, Mauer M: Cellular basis of diabetic nephropathy: II. The transforming growth factor-β system and diabetic nephropathy lesions in type 1 diabetes.
Diabetes
51
:
3577
–3581,
2002
97.
Nakagawa H, Sasahara M, Haneda M, Koya D, Hazama F, Kikkawa R: Immunohistochemical characterization of glomerular PDGF B-chain and PDGF [beta]-receptor expression in diabetic rats.
Diabetes Res Clin Prac
48
:
87
–98,
2000
98.
Kim HW, Kim BC, Song CY, Kim JH, Hong HK, Lee HS: Heterozygous mice for TGF-betaIIR gene are resistant to the progression of streptozotocin-induced diabetic nephropathy.
Kidney Int
66
:
1859
–1865,
2004
99.
Kelly DJ, Stein-Oakley A, Zhang Y, Wassef L, Maguire J, Koji T, Thomson N, Wilkinson-Berka JL, Gilbert RE: Fas-induced apoptosis is a feature of progressive diabetic nephropathy in transgenic (mRen-2)27 rats: attenuation with renin-angiotensin blockade.
Nephrology
9
:
7
–13,
2004
100.
Hovind P, Tarnow L, Oestergaard PB, Parving HH: Elevated vascular endothelial growth factor in type 1 diabetic patients with diabetic nephropathy.
Kidney Int
75 (Suppl.)S56–S61,
2000
101.
Onozaki A, Midorikawa S, Sanada H, Hayashi Y, Baba T, Katoh T, Watanabe T: Rapid change of glucose concentration promotes mesangial cell proliferation via VEGF: inhibitory effects of thiazolidinedione.
Biochem Biophys Res Commun
317
:
24
–29,
2004
102.
Nakajima K, Tanaka Y, Nomiyama T, Ogihara T, Ikeda F, Kanno R, Iwashita N, Sakai K, Watada H, Onuma T, Kawamori R: RANTES promoter genotype is associated with diabetic nephropathy in type 2 diabetic subjects.
Diabetes Care
26
:
892
–898,
2003
103.
Tarnow L, Pociot F, Hansen PM, Rossing P, Nielsen FS, Hansen BV, Parving HH: Polymorphisms in the interleukin-1 gene cluster do not contribute to the genetic susceptibility of diabetic nephropathy in Caucasian patients with IDDM.
Diabetes
46
:
1075
–1076,
1997
104.
Loughrey BV, Maxwell AP, Fogarty DG, Middleton D, Harron JC, Patterson CC, Darke C, Savage DA: An interluekin 1B allele, which correlates with a high secretor phenotype, is associated with diabetic nephropathy.
Cytokine
10
:
984
–988,
1998
105.
Bensen JT, Langefeld CD, Hawkins GA, Green LE, Mychaleckyj JC, Brewer CS, Kiger DS, Binford SM, Colicigno CJ, Allred DC, Freedman BI, Bowden DW: Nucleotide variation, haplotype structure, and association with end-stage renal disease of the human interleukin-1 gene cluster.
Genomics
82
:
194
–217,
2003
106.
Blakemore AI, Cox A, Gonzalez AM, Maskil JK, Hughes ME, Wilson RM, Ward JD, Duff GW: Interleukin-1 receptor antagonist allele (IL1RN*2) associated with nephropathy in diabetes mellitus.
Hum Genet
97
:
369
–374,
1996
107.
Ng DP, Warram JH, Krolewski AS: TGF-beta 1 as a genetic susceptibility locus for advanced diabetic nephropathy in type 1 diabetes mellitus: an investigation of multiple known DNA sequence variants.
Am J Kidney Dis
41
:
22
–28,
2003
108.
Wong TY, Poon P, Chow KM, Szeto CC, Cheung MK, Li PK: Association of transforming growth factor-beta (TGF-beta) T869C (Leu 10Pro) gene polymorphisms with type 2 diabetic nephropathy in Chinese.
Kidney Int
63
:
1831
–1835,
2003
109.
Sharma K, Ziyadeh FN: Hyperglycemia and diabetic kidney disease: the case for transforming growth factor-beta as a key mediator.
Diabetes
44
:
1139
–1146,
1995
110.
Mattu RK, Trevelyan J, Needham EW, Khan M, Adiseshiah MA, Richter D, Murray RG, Betteridge DJ: Lipoprotein lipase gene variants relate to presence and degree of microalbuminuria in type II diabetes.
Diabetologia
45
:
905
–913,
2002
111.
Leehey DJ, Song RH, Alavi N, Singh AK: Decreased degradative enzymes in mesangial cells cultured in high glucose media.
Diabetes
44
:
929
–935,
1995
112.
Lang F, Klingel K, Wagner CA, Stegen C, Warntges S, Friedrich B, Lanzendorfer M, Melzig J, Moschen I, Steuer S, Waldegger S, Sauter M, Paulmichl M, Gerke V, Risler T, Gamba G, Capasso G, Kandolf R, Hebert SC, Massry SG, Broer S: Deranged transcriptional regulation of cell-volume-sensitive kinase hSGK in diabetic nephropathy.
Proc Natl Acad Sci U S A
97
:
8157
–8162,
2000
113.
Sun L, Pan X, Wada J, Haas CS, Wuthrich RP, Danesh FR, Chugh SS, Kanwar YS: Isolation and functional analysis of mouse UbA52 gene and its relevance to diabetic nephropathy.
J Biol Chem
277
:
29953
–29962,
2002
114.
Bluthner M, Bruntgens A, Schmidt S, Strojek K, Grzeszczak W, Ritz E: Association of methylenetetrahydrofolate reductase gene polymorphism and diabetic nephropathy in type 2 diabetes?
Nephrol Dial Transplant
14
:
56
–57,
1999
115.
Makita Y, Moczulski DK, Bochenski J, Smiles AM, Warram JH, Krolewski AS: Methylenetetrahydrofolate reductase gene polymorphism and susceptibility to diabetic nephropathy in type 1 diabetes.
Am J Kidney Dis
41
:
1189
–1194,
2003
116.
Smyth JS, Savage DA, Maxwell AP: MTHFR gene polymorphism and diabetic nephropathy in type 1 diabetes.
Lancet
353
:
1156
–1157,
1999
117.
Weekers L, Hadjadj S, Belloum R, YG, Bouhanick B, MM: Lack of contribution of two endothelial nitric-oxide synthase (eNOS) gene polymorphisms to diabetic nephropathy in type 1 diabetes.
Diabetologia
42 (Suppl. 1)
:
A266
,
1999
118.
Zanchi A, Moczulski DK, Hanna LS, Wantman M, Warram JH, Krolewski AS: Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism.
Kidney Int
57
:
405
–413,
2000
119.
Degen B, Schmidt S, Ritz E: A polymorphism in the gene for the endothelial nitric oxide synthase and diabetic nephropathy.
Nephrol Dial Transplant
16
:
185
,
2001
120.
Ng DP, Warram JH, Krolewski AS: To: Rippin JD, Patel A, Belyaev ND, Gill GV, Barnett AH, Bain SC (2003) Nitric oxide synthase gene polymorphisms and diabetic nephropathy. Diabetologia 
46
:
426
–428.
Diabetologia
46
:
1706
,
2003
121.
Rippin JD, Patel A, Belyaev ND, Gill GV, Barnett AH, Bain SC: Nitric oxide synthase gene polymorphisms and diabetic nephropathy.
Diabetologia
46
:
426
–428,
2003
122.
Chiarelli F, Pomilio M, Mohn A, Tumini S, Verrotti A, Mezzetti A, Cipollone F, Wasniewska M, Morgese G, Spagnoli A: Serum angiogenin concentrations in young patients with diabetes mellitus.
Eur J Clin Invest
32
:
110
–114,
2002
123.
De Cosmo S, Argiolas A, Miscio G, Thomas S, Piras GP, Trevisan R, Perin PC, Bacci S, Zucaro L, Margaglione M, Frittitta L, Pizzuti A, Tassi V, Viberti GC, Trischitta V: A PC-1 amino acid variant (K121Q) is associated with faster progression of renal disease in patients with type 1 diabetes and albuminuria.
Diabetes
49
:
521
–524,
2000
124.
De Cosmo S, Miscio G, Zucaro L, Margaglione M, Argiolas A, Thomas S, Piras G, Trevisan R, Perin PC, Bacci S, Frittitta L, Pizzuti A, Tassi V, Di Minno G, Viberti G, Trischitta V: The role of PC-1 and ACE genes in diabetic nephropathy in type 1 diabetic patients: evidence for a polygenic control of kidney disease progression.
Nephrol Dial Transplant
17
:
1402
–1407,
2002
125.
Jacobsen P, Grarup N, Tarnow L, Parving HH, Pedersen O: PC-1 amino acid variant (K121Q) has no impact on progression of diabetic nephropathy in type 1 diabetic patients.
Nephrol Dial Transplant
17
:
1408
–1412,
2002
126.
Canani LH, Ng DP, Smiles A, Rogus JJ, Warram JH, Krolewski AS: Polymorphism in ecto-nucleotide pyrophosphatase/phosphodiesterase 1 gene (ENPP1/PC-1) and early development of advanced diabetic nephropathy in type 1 diabetes.
Diabetes
51
:
1188
–1193,
2002
127.
Nagai K, Arai H, Yanagita M, Matsubara T, Kanamori H, Nakano T, Iehara N, Fukatsu A, Kita T, Doi T: Growth arrest-specific gene 6 is involved in glomerular hypertrophy in the early stage of diabetic nephropathy.
J Biol Chem
278
:
18229
–18234,
2003
128.
Nakamura T, Ebihara I, Tomino Y, Koide H: Effect of a specific endothelin A receptor antagonist on murine lupus nephritis.
Kidney Int
47
:
481
–489,
1995
129.
Khan MA, Dashwood MR, Mumtaz FH, Thompson CS, Mikhailidis DP, Morgan RJ: Upregulation of endothelin A receptor sites in the rabbit diabetic kidney: potential relevance to the early pathogenesis of diabetic nephropathy.
Nephron
83
:
261
–267,
1999
130.
Makkinje A, Quinn DA, Chen A, Cadilla CL, Force T, Bonventre JV, Kyriakis JM: Gene 33/Mig-6, a transcriptionally inducible adapter protein that binds GTP-Cdc42 and activates SAPK/JNK: a potential marker transcript for chronic pathologic conditions, such as diabetic nephropathy: possible role in the response to persistent stress.
J Biol Chem
275
:
17838
–17847,
2000
131.
Kang N, Alexander G, Park JK, Maasch C, Buchwalow I, Luft FC, Haller H: Differential expression of protein kinase C isoforms in streptozotocin-induced diabetic rats.
Kidney Int
56
:
1737
–1750,
1999
132.
Menne J, Park JK, Boehne M, Elger M, Lindschau C, Kirsch T, Meier M, Gueler F, Fiebeler A, Bahlmann FH, Leitges M, Haller H: Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice.
Diabetes
53
:
2101
–2109,
2004
133.
Isono M, Chen S, Hong SW, Iglesias-de la Cruz MC, Ziyadeh FN: Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells.
Biochem Biophys Res Commun
296
:
1356
–1365,
2002
134.
Song Y, Ailenberg M, Silverman M: Cloning of a novel gene in the human kidney homologous to rat munc13s: its potential role in diabetic nephropathy.
Kidney Int
53
:
1689
–1695,
1998
135.
Maltais I, Bachvarova M, Maheux P, Perron P, Marceau F, Bachvarov D: Bradykinin B2 receptor gene polymorphism is associated with altered urinary albumin/creatinine values in diabetic patients.
Can J Physiol Pharmacol
80
:
323
–327,
2002
136.
Zychma MJ, Gumprecht J, Zukowska-Szczechowska E, Grzeszczak W: Polymorphisms in the genes encoding for human kinin receptors and the risk of end-stage renal failure: results of transmission/disequilibrium test: the End-Stage Renal Disease Study Group.
J Am Soc Nephrol
10
:
2120
–2124,
1999
137.
Kakoki M, Takahashi N, Jennette JC, Smithies O: Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor.
Proc Natl Acad Sci U S A
101
:
13302
–13305,
2004
138.
Herrmann SM, Ringel J, Wang JG, Staessen JA, Brand E: Peroxisome proliferator–activated receptor-γ2 polymorphism Pro12Ala is associated with nephropathy in type 2 diabetes: the Berlin Diabetes Mellitus (BeDiaM) study.
Diabetes
51
:
2653
–2657,
2002
139.
Caramori ML, Canani LH, Costa LA, Gross JL: The human peroxisome proliferator-activated receptor gamma2 (PPARgamma2) Pro12Ala polymorphism is associated with decreased risk of diabetic nephropathy in patients with type 2 diabetes.
Diabetes
52
:
3010
–3013,
2003
140.
Sugawara F, Yamada Y, Watanabe R, Ban N, Miyawaki K, Kuroe A, Hamasaki A, Ikeda H, Kurose T, Usami M, Ikeda M, Seino Y: The role of the TSC-22 (-396) A/G variant in the development of diabetic nephropathy.
Diabetes Res Clin Pract
60
:
191
–197,
2003
141.
Hodgkinson AD, Bartlett T, Oates PJ, Millward BA, Demaine AG: The response of antioxidant genes to hyperglycemia is abnormal in patients with type 1 diabetes and diabetic nephropathy.
Diabetes
52
:
846
–851,
2003
142.
Etoh T, Inoguchi T, Kakimoto M, Sonoda N, Kobayashi K, Kuroda J, Sumimoto H, Nawata H: Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibility by interventive insulin treatment.
Diabetologia
46
:
1428
–1437,
2003
143.
Agre P, Kozono D: Aquaporin water channels: molecular mechanisms for human diseases.
FEBS Lett
555
:
72
–78,
2003
144.
Trevisan R, Viberti G: Sodium-hydrogen antiporter: its possible role in the genesis of diabetic nephropathy.
Nephrol Dial Transplant
12
:
643
–645,
1997
145.
Zerbini G, Gabellini D, Ruggieri D, Maestroni A: Increased sodium-lithium countertransport activity: a cellular dysfunction common to essential hypertension and diabetic nephropathy.
J Am Soc Nephrol
15 (Suppl. 1)
:
S81
–S84,
2004
146.
Tanaka N, Babazono T, Saito S, Sekine A, Tsunoda T, Haneda M, Tanaka Y, Fujioka T, Kaku K, Kawamori R, Kikkawa R, Iwamoto Y, Nakamura Y, Maeda S: Association of solute carrier family 12 (sodium/chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of single nucleotide polymorphisms.
Diabetes
52
:
2848
–2853,
2003
147.
Anwar W, Gerard P, Moutabarrek A, Namour F, Gueant J-L: End-stage renal disease increases plasma transcobalamin and neutralizes influence of TCN 776C>G polymorphism.
Kidney Int
66
:
2092
–2093,
2004
148.
Murata I, Takemura G, Asano K, Sano H, Fujisawa K, Kagawa T, Baba K, Maruyama R, Minatoguchi S, Fujiwara T, Fujiwara H: Apoptotic cell loss following cell proliferation in renal glomeruli of Otsuka Long-Evans Tokushima Fatty rats, a model of human type 2 diabetes.
Am J Nephrol
22
:
587
–595,
2002
149.
Kang BP, Urbonas A, Baddoo A, Baskin S, Malhotra A, Meggs LG: IGF-1 inhibits the mitochondrial apoptosis program in mesangial cells exposed to high glucose.
Am J Physiol Renal Physiol
285
:
F1013
–F1024,
2003
150.
Li H, Telemaque S, Miller RE, Marsh JD: High glucose inhibits apoptosis induced by serum deprivation in vascular smooth muscle cells via upregulation of Bcl-2 and Bcl-xl.
Diabetes
54
:
540
–545,
2005
151.
Ceriello A, Morocutti A, Mercuri F, Quagliaro L, Moro M, Damante G, Viberti GC: Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy.
Diabetes
49
:
2170
–2177,
2000
152.
McMahon R, Murphy M, Clarkson M, Taal M, Mackenzie HS, Godson C, Martin F, Brady HR: IHG-2, a mesangial cell gene induced by high glucose, is human gremlin: regulation by extracellular glucose concentration, cyclic mechanical strain, and transforming growth factor-beta1.
J Biol Chem
275
:
9901
–9904,
2000
153.
Conway BR, Maxwell AP, Savage DA, Patterson CC, Doran PP, Murphy M, Brady HR, Fogarty DG: Association between variation in the actin-binding gene caldesmon and diabetic nephropathy in type 1 diabetes.
Diabetes
53
:
1162
–1165,
2004

Supplementary data