Obesity has a heritable component; however, the heterogeneity of obesity complicates dissection of its genetic background. In this study, we therefore focused on eating patterns as specific traits within obesity. These traits have a heritable component; genes associated with a specific eating pattern have not yet been reported at the population level. In this study, we determined whether genetic variations in cholecystokinin (CCK) and leptin genes underlie specific eating patterns. We selected obese individuals showing extreme snacking behavior or use of excessive portion sizes from a large population-based sample (n = 17,357) from the Prospect-EPIC (European Prospective Study into Cancer and Nutrition) study. Using allele-specific PCRs, we tested several single nucleotide polymorphisms in the candidate genes and performed haplotype analysis. Obese carriers of common allelic variations in leptin or the leptin receptor gene had an increased risk to display extreme snacking behavior. In contrast, obese carriers of common allelic variations in CCK had an increased risk to eating increased meal sizes. In conclusion, we identified common allelic variants specifically associated with distinctly different eating patterns, namely extreme snacking behavior or excessive portion size.

Obesity is an increasing problem in modern societies and a major risk factor for chronic diseases including diabetes, hypertension, and cardiovascular disease (13). Despite many genetic studies, only a small percentage of obesity cases can be directly explained by single gene mutations (47).

Different studies have shown a heritable component for eating behavior (812). Meal size and meal frequency are two eating patterns that show heritability (810). Only a few studies have been conducted to find genes underlying this heritability. Two studies have reported on genome- wide linkage screens: Steinle et al. (11) showed specific logarithm of odds scores for specific eating habits and Bouchard et al. (13) reported evidence of a specific candidate gene neuromedin B for eating behaviors and predisposition to obesity.

Two hormones, cholecystokinin (CCK) and leptin, have been implicated in the control of meal size and frequency in animal and human studies. Individuals with defects in the leptin gene have constant hunger and craving for food, which suggests a role for leptin in feelings of hunger in humans (14). However, mutations in leptin and its receptor explain only a very small proportion of the obese population. CCK is a satiety hormone. Administration of CCK in rats and humans results in a reduction of food intake (1517). In contrast to leptin (receptor), no associations between obesity and the CCK gene have been described.

To determine whether common genetic variations in the CCK gene, the leptin gene, and its receptor contribute to abnormal eating habits in obese women, we performed a case-control study and tested these genes for association with meal size and meal frequency in a sample of individuals displaying at least one of these traits in an extreme form.

The study population was selected from the Prospect-European Prospective Study into Cancer and Nutrition (EPIC) study, a large population-based study that allowed the selection of obese individuals with specific eating patterns. The study is one of two Dutch components of the EPIC cohort, originally designed to investigate the role of nutrition factors in the occurrence of cancer (18). The cohort consists of 17,357 females aged 49–70 years at enrollment between 1993 and 1997 living in Utrecht, the Netherlands, or in the near vicinity with a Dutch ancestry. Detailed data on dietary habits, blood samples, BMI, and eating habits and physical activity (both based on a validated questionnaire) were present for all women (19,20) (Table 1). The cases were selected using the extreme discordant phenotype (EDP) approach (21) for an extreme meal size or meal frequency instead of on the broad phenotype of obesity; this selection results in a nine times–enhancement of statistical power (21).

Of the 17,357 women, a selection was made based on three criteria: BMI ≥33 kg/m2; a score on snack behavior in the top 5th percentile, based on 11 questions regarding frequency of snack consumption; and a score in the top 5th percentile of food intake, based on 28 questions using color photographs to estimate portion size. As quality control measures, women with total energy intake <500 kcal/day or total energy intake >6,000 kcal/day were excluded. An exclusion criterion was the combination of high activity levels in the top 5th percentile, combined with high food intake, based on caloric intake. Beforehand, 1,450 women were excluded because of missing data on physical activity. We did not select highly active women, as they have a reason for high energy intake either through large meals or through frequent snacking. Based on activity level, 767 women were excluded before the selection of case and control subjects.

The selection resulted in 72 women who met the criteria BMI ≥33 kg/m2 and scored in the top 5th percentile of meal size, 60 women who met the criteria BMI ≥33 kg/m2 and whose snack behavior was in the top 5th percentile, and 3 women who met all three criteria for a total of 135 cases. A total of 287 control subjects were randomly selected from the total cohort. The BMI of this random selection was means ± SD 25.8 ± 1.46 kg/m2. Within the random control group, there were women with snack (5%), meal size (2%), or both (1%) behaviors in the top 5th percentile but with a BMI <33 kg/m2. The institutional review board of the University Medical Centre Utrecht, Utrecht, the Netherlands, approved the study and all participating subjects provided written consent.

Single nucleotide polymorphism selection and analysis.

Haplotype-tagging single nucleotide polymorphisms (SNPs) were selected in the coding sequence and 100 kb up- and downstream of the genes using HapMap (Haploview 3.2) (available at http://www.gmap.net/perl/marker/marker) with r2 >0.80 or Marker (22), which were available at the time of the study design. An SNP database search at the National Center for Biotechnology Information was conducted for the identification of nonsynonymous SNPs. This resulted in five haplotype-based SNPs for CCK, four SNPs for leptin, three haplotype-based and one coding SNP, and eight SNPs for the leptin receptor (seven were haplotype-based and one nonsynonymous SNP). All SNPs had a minor allele frequency of at least 15%.

All SNPs were genotyped using an allele-specific PCR. The PCR was performed using labeled primers with a 3′ locked nucleic acid, which is a modified SNP-binding nucleotide with a high binding affinity. Pooled PCR products determining different SNPs in one individual were separated by size on a 3700 capillary sequencer (ABI) and analyzed using the program Genemapper. This technique has been validated by comparing genotypes for multiple SNPs with those obtained from a Taqman system (ABI) with perfect agreement of results (data not shown).

Statistical analysis.

The SNPs were tested for deviations from Hardy-Weinberg equilibrium using a Hardy-Weinberg P value cutoff of 0.01. Statistical analysis of the individual SNPs on genotype and allelic level was performed with the use of the two-sided Fisher’s exact test. Haplotypes were determined using Haploview 3.2 (22). Differences in haplotype distribution were analyzed using a two-sided Fisher’s exact test. The statistical significance level for all tests was set at P <0.05. To correct for multiple testing using the permutation analysis function of UNPHASED, 100 permutations were performed.

We genotyped 17 SNPs located in the 3′ untranslated region or coding region of CCK (n = 5), leptin (n = 4), and the leptin receptor (n = 8) in the total sample (n = 422). All SNPs showed the expected genotype proportions when tested for Hardy-Weinberg equilibrium.

The case subjects were categorized according to extreme snack behavior (n = 60) and meal size (n = 72). The genotype and allelic distributions of the 17 SNPs were compared between the two selection groups and the random control sample (n = 287); global P values were determined, and haplotypes were subsequently established.

Four of the five tested CCK SNPs showed a specific association signal with extreme meal size (P = 0.005, P = 0.00, P = 0.001, and P = 0.02) but not with extreme snack behavior (Table 2). One of eight SNPs of the leptin receptor and two of four SNPs of leptin were associated with extreme snack behavior but not with meal size (P = 0.02, P = 0.01, and P = 0.006) (Table 3). Furthermore, (corrected) global P values, derived from single SNPs, show significant associations (CCK P = 0.029, leptin receptor P = 0.009, and leptin P = 0.0198) with meal size and snacking.

Using Haploview 3.2 (22) we constructed haplotypes to determine whether specific haplotypes underlie the associations found. Haplotypes were determined for CCK, CCK_H1–H5 (rs6809785, rs7611677, rs6801844, and rs6791019) and leptin, Lep_H1–H7 (rs4577902, rs2060736, and rs4731413). A very high D′ (close to 1) (Tables 4 and 5) was detected between the haplotype SNPs within both CCK and leptin. This indicates that the haplotype data do reflect the findings of the individual SNPs (i.e., significantly associated). No haplotypes could be determined for the leptin receptor. (Tables 4 and 5) using Haploview 3.2.

CCK_H3 showed an increase in frequency in extreme portion eaters compared with control subjects, an increase from 10% (n = 37) to 17% (n = 21) (P = 0.022), suggesting that H3 is a risk haplotype for an increased meal size. The three SNPs determining this haplotype also individually showed an association with this phenotype.

In agreement with the observed association for the allelic variations for the leptin gene, the SNPs also showed at the haplotype level a specific association with extreme snacking. The most frequent haplotype (Lep_H1) was observed in the extreme snack group (58% [n = 252] vs. 68% [n = 53], P = 0.03), while a clear loss of Lep_H3 was seen (13% [n = 56] to 3% [n = 2], P = 0.01). These data suggest that there is a protective (Lep_H3) and a risk (Lep_H1) haplotype for extreme snack behavior.

We also assessed the SNPs in the total case group. Three of the individually tested SNPs, rs6791019, rs6809785 and rs11129946, of CCK showed an association (P = 0.001, P = 0.02, P = 0.03, respectively, Table 2).

Finally we checked the haplotype distribution within the random control group. Within the control group 5% (n = 15) and 2% (n = 7) displayed extreme snacking or meal size without a BMI ≥33 kg/m2. The associated haplotypes found in the obese group were borderline associated in the extreme snackers (Lep_H1, P = 0.05) and not in the portion eaters (CCK_H3, P = 0.74) in the control group. The very small number of women included in these groups probably caused this. Of the total random control group, 13.5% had a BMI ≥33 kg/m2, without displaying the specific eating patterns. The allelic and haplotype distributions of the CCK, leptin, and leptin receptor genes in the group with BMI ≥33 kg/m2 did not differ from the distributions found in the rest of the control group.

In this study, we associated SNPs and haplotypes in the CCK gene with large meal size and in the leptin genes with high meal frequencies, two specific eating patterns within the broad phenotype of obesity.

We took an alternative approach to previous research addressing the genetic basis of obesity. Using the EDP approach we selected cases based on the extreme expression of specific traits of food intake and show that this mode of selection is useful in determining common genetic variation underlying a specific trait within a broad phenotype. Interestingly, the selected population fell into two almost nonoverlapping groups, which for a significant portion was explained by genetic variation at the three genes that were genotyped. This may not be surprising since extreme snacking may decrease meal size.

As far as we know, no association studies have been reported on the role of the CCK gene in obesity, satiety, or meal size. In this study we found associations between CCK polymorphisms/haplotypes and excessive meal size, which probably contribute to problems with satiety signaling in these carriers.

Some genetic studies have been conducted on the role of leptin genes in obesity (5,14,23,24). Only a small number of rare variants have been found explaining only a minority of the obese cases. Our findings suggest a specified role of the leptin genes in obesity, namely in extreme meal frequencies in the population sample.

The usefulness of the EDP approach is illustrated by the different frequencies of the observed Lep_H1 haplotypes in the extreme cases (68%) and the overall cases (62%) versus the control sample (58%). It is remarkable that such a common haplotype was found to be associated with extreme snacking. Further study is required to investigate the genetic history of this haplotype and its possible biological relevance for obesity.

Based on the haplotype and genotype associations, we could determine that obese carriers of variants in the CCK gene have an increased risk of eating large portion sizes, with a 60% increased risk for carriers of the CCK_H3 haplotype and that obese carriers of variants in the leptin genes have an increased risk if displaying extreme snack behavior, with a 20% increased risk for Lep _H1 haplotype carriers. However, given the high frequency of this allele in the population, the population attributable risk is very high.

Further studies are necessary to confirm our findings and to examine the effect of the genetic variants in order to be able to evaluate the general risk in the population. It will be interesting to see to what extent the found risk alleles and haplotypes contribute to eating patterns in the general population.

TABLE 1

Population characteristics of portion, snack, and control cases

CharacteristicPortion casesSnack casesControl cases
n 84 72 312 
Age (years) 57 ± 6 58 ± 7 57 ± 6 
Systolic blood pressure (mmHg) 143 ± 19 143 ± 18 132 ± 20 
Diastolic blood pressure (mmHg) 85 ± 10 85 ± 11 78 ± 11 
BMI (kg/m236 ± 3 36 ± 3 26 ± 4 
Waist-hip ratio 0.84 ± 0.07 0.84 ± 0.06 0.79 ± 0.06 
Never smokers 35 (2) 35 (49) 141 (45) 
Premenopausal 9 (11) 6 (8) 31 (10) 
Ever postmenopausal-hormone users 27 (33) 16 (22) 78 (25) 
CharacteristicPortion casesSnack casesControl cases
n 84 72 312 
Age (years) 57 ± 6 58 ± 7 57 ± 6 
Systolic blood pressure (mmHg) 143 ± 19 143 ± 18 132 ± 20 
Diastolic blood pressure (mmHg) 85 ± 10 85 ± 11 78 ± 11 
BMI (kg/m236 ± 3 36 ± 3 26 ± 4 
Waist-hip ratio 0.84 ± 0.07 0.84 ± 0.06 0.79 ± 0.06 
Never smokers 35 (2) 35 (49) 141 (45) 
Premenopausal 9 (11) 6 (8) 31 (10) 
Ever postmenopausal-hormone users 27 (33) 16 (22) 78 (25) 

Data are means ± SD or n (%).

TABLE 2

Genotype and allelic distributions of the CCK polymorphisms in different case populations compared with the control population

PolymorphismGenotypesAlleles
rs6791019 TT CT CC P P 
    Total cases 56 (49) 45 (40) 13 (11) 0.001* 157 (69) 69 (31) 0.07 
    Portion cases 29 (43) 29 (43) 10 (14) 0.005* 87 (64) 49 (36) 0.009* 
    Snack cases 25 (58) 15 (35) 3 (7) 0.73 65 (76) 21 (24) 0.94 
    Controls 145 (56) 98 (38) 15 (6)  388 (75) 128 (25)  
rs7611677 CC CT TT P P 
    Total cases 89 (76) 25 (21) 3 (3) 0.07 203 (87) 31 (13) 0.03* 
    Portion cases 44 (68) 19 (29) 2 (3) 0.005* 107 (82) 23 (18) 0.002* 
    Snack cases 42 (86) 6 (12) 1 (2) 0.47 90 (92) 8 (8) 0.99 
    Controls 201 (84) 35 (15) 2 (1)  437 (92) 39 (8)  
rs6809785 CC CG GG P P 
    Total cases 74 (76) 23 (24) 0.02* 171 (88) 23 (12) 0.05 
    Portion cases 38 (70) 16 (30) 0.001* 92 (85) 16 (15) 0.01* 
    Snack cases 33 (83) 7 (17) 0.42 73 (91) 7 (9) 0.62 
    Controls 198 (86) 29 (13) 2 (1)  425 (93) 33 (7)  
rs11129946 GG GT TT P P 
    Total cases 53 (59) 34 (37) 4 (4) 0.03* 140 (77) 42 (23) 0.42 
    Portion cases 34 (64) 18 (34) 1 (2) 0.02* 86 (81) 20 (19) 0.11 
    Snack cases 18 (51) 14 (40) 3 (9) 0.71 50 (71) 20 (29) 0.66 
    Controls 144 (58) 77 (31) 26 (11)  365 (74) 129 (26)  
rs6801844 GG GA AA P P 
    Total cases 50 (52) 39 (41) 7 (7) 0.23 139 (72) 53 (28) 0.29 
    Portion cases 24 (45) 24 (45) 5 (10) 0.09 72 (68) 34 (32) 0.07 
    Snack cases 24 (60) 14 (35) 2 (5) 0.72 62 (78) 18 (23) 0.82 
    Controls 136 (59) 79 (34) 15 (7)  351 (76) 109 (24)  
PolymorphismGenotypesAlleles
rs6791019 TT CT CC P P 
    Total cases 56 (49) 45 (40) 13 (11) 0.001* 157 (69) 69 (31) 0.07 
    Portion cases 29 (43) 29 (43) 10 (14) 0.005* 87 (64) 49 (36) 0.009* 
    Snack cases 25 (58) 15 (35) 3 (7) 0.73 65 (76) 21 (24) 0.94 
    Controls 145 (56) 98 (38) 15 (6)  388 (75) 128 (25)  
rs7611677 CC CT TT P P 
    Total cases 89 (76) 25 (21) 3 (3) 0.07 203 (87) 31 (13) 0.03* 
    Portion cases 44 (68) 19 (29) 2 (3) 0.005* 107 (82) 23 (18) 0.002* 
    Snack cases 42 (86) 6 (12) 1 (2) 0.47 90 (92) 8 (8) 0.99 
    Controls 201 (84) 35 (15) 2 (1)  437 (92) 39 (8)  
rs6809785 CC CG GG P P 
    Total cases 74 (76) 23 (24) 0.02* 171 (88) 23 (12) 0.05 
    Portion cases 38 (70) 16 (30) 0.001* 92 (85) 16 (15) 0.01* 
    Snack cases 33 (83) 7 (17) 0.42 73 (91) 7 (9) 0.62 
    Controls 198 (86) 29 (13) 2 (1)  425 (93) 33 (7)  
rs11129946 GG GT TT P P 
    Total cases 53 (59) 34 (37) 4 (4) 0.03* 140 (77) 42 (23) 0.42 
    Portion cases 34 (64) 18 (34) 1 (2) 0.02* 86 (81) 20 (19) 0.11 
    Snack cases 18 (51) 14 (40) 3 (9) 0.71 50 (71) 20 (29) 0.66 
    Controls 144 (58) 77 (31) 26 (11)  365 (74) 129 (26)  
rs6801844 GG GA AA P P 
    Total cases 50 (52) 39 (41) 7 (7) 0.23 139 (72) 53 (28) 0.29 
    Portion cases 24 (45) 24 (45) 5 (10) 0.09 72 (68) 34 (32) 0.07 
    Snack cases 24 (60) 14 (35) 2 (5) 0.72 62 (78) 18 (23) 0.82 
    Controls 136 (59) 79 (34) 15 (7)  351 (76) 109 (24)  

Data are n (%). For some sequences, only a 70–75% success rate could be reached due to a less efficient allele-specific PCR.

*

P values are significant.

TABLE 3

Genotype and allelic distributions of the leptin receptor and leptin gene polymorphisms in the different case populations compared with the control population

PolymorphismGenotypesAlleles
rs2025804 AA AG GG P P 
    Total cases 47 (41) 51 (44) 17 (15) 0.21 145 (63) 85 (37) 0.37 
    Portion cases 28 (43) 30 (46) 7 (11) 0.76 86 (66) 44 (34) 0.78 
    Snack cases 17 (36) 20 (43) 10 (21) 0.02* 54 (57) 40 (43) 0.06 
    Controls 111 (44) 114 (46) 24 (10)  336 (67) 162 (33)  
rs1782754 GG GA AA P P 
    Total cases 56 (49) 47 (42) 10 (9) 0.68 159 (70) 67 (30) 0.85 
    Portion cases 33 (51) 28 (43) 4 (6) 0.76 94 (72) 36 (28) 0.78 
    Snack cases 21 (47) 18 (40) 6 (13) 0.77 60 (67) 30 (33) 0.43 
    Controls 88 (51) 68 (40) 16 (9)  244 (71) 100 (29)  
rs7529650 GG GA AA P P 
    Total cases 46 (40) 46 (40) 24 (20) 0.05 138 (59) 94 (41) 0.47 
    Portion cases 25 (38) 29 (45) 11 (17) 0.39 79 (61) 51 (39) 0.44 
    Snack cases 19 (40) 16 (33) 13 (27) 0.11 54 (56) 42 (44) 0.91 
    Controls 63 (32) 96 (49) 36 (19)  222 (57) 168 (43)  
rs1171265 AA AG GG P P 
    Total cases 44 (46) 41 (43) 11 (11) 0.14 129 (67) 63 (33) 0.17 
    Portion cases 23 (43) 24 (44) 7 (13) 0.37 70 (65) 38 (35) 0.47 
    Snack cases 19 (49) 16 (41) 4 (10) 0.17 54 (69) 24 (31) 0.17 
    Controls 86 (41) 82 (40) 40 (19)  254 (61) 162 (39)  
rs1137100 AA AG GG P P 
    Total cases 45 (49) 39 (42) 0 (9) 0.23 129 (70) 55 (30) 0.58 
    Portion cases 25 (52) 20 (42) 3 (6) 0.46 70 (73) 26 (27) 0.97 
    Snack cases 19 (45) 18 (43) 5 (12) 0.25 56 (67) 28 (33) 0.26 
    Controls 123 (55) 77 (35) 22 (10)  323 (73) 121 (27)  
rs1137101 GG GA AA P P 
    Total cases 31 (28) 47 (42) 34 (30) 0.12 109 (49) 115 (51) 0.99 
    Portion cases 14 (23) 25 (41) 22 (36) 0.46 53 (43) 69 (57) 0.97 
    Snack cases 16 (33) 20 (42) 12 (25) 0.09 52 (54) 44 (46) 0.33 
    Controls 52 (22) 122 (53) 58 (25)  226 (49) 238 (51)  
rs6673324 AA AG GG P P 
    Total cases 25 (27) 49 (53) 18 (20) 0.05 99 (54) 85 (46) 0.73 
    Portion cases 12 (23) 29 (57) 10 (20) 0.66 53 (52) 49 (48) 0.49 
    Snack cases 12 (31) 19 (49) 8 (20) 0.36 43 (55) 35 (45) 0.92 
    Controls 72 (36) 79 (40) 49 (24)  223 (56) 177 (44)  
rs1327116 AA AC CC P P 
    Total cases 57 (51) 46 (41) 9 (8) 0.92 160 (71) 64 (29) 0.99 
    Portion cases 31 (50) 27 (44) 4 (6) 0.57 89 (72) 35 (28) 0.99 
    Snack cases 24 (51) 18 (38) 5 (11) 0.96 66 (70) 28 (30) 0.76 
    Controls 133 (52) 98 (39) 23 (9)  366 (72) 144 (28)  
rs791607 TT CT CC P P 
    Total cases 90 (89) 11 (11) 0.10 191 (95) 11 (5) 0.08 
    Portion cases 50 (85) 9 (15) 0.57 109 (92) 9 (8) 0.54 
    Snack cases 39 (98) 1 (2) 0.01* 79 (99) 1 (1) 0.61 
    Controls 155 (81) 34 (18) 1 (1)  344 (91) 36 (9)  
rs4577902 TT CT CC P P 
    Total cases 75 (73) 27 (26) 1 (1) 0.32 177 (86) 29 (14) 0.42 
    Portion cases 42 (72) 15 (26) 1 (2) 0.32 99 (85) 17 (15) 0.30 
    Snack cases 31 (74) 11 (26) 0.006* 73 (87) 11 (13) 0.58 
    Controls 193 (79) 49 (20) 3 (1)  435 (89) 55 (11)  
rs2060736 CC CG GG P P 
    Total cases 44 (72) 16 (26) 1 (2) 0.36 104 (85) 18 (15) 0.71 
    Portion cases 17 (65) 9 (35) 0.18 43 (83) 9 (17) 0.83 
    Snack cases 14 (74) 5 (26) 0.22 33 (87) 5 (13) 0.63 
    Controls 138 (72) 46 (24) 8 (4)  322 (84) 62 (16)  
rs4731413 GG GA AA P P 
    Total cases 59 (65) 26 (29) 5 (6) 0.1 144 (80) 36 (20) 0.44 
    Portion cases 30 (65) 14 (31) 2 (4) 0.35 74 (80) 18 (20) 0.62 
    Snack cases 27 (64) 12 (29) 3 (7) 0.07 66 (79) 18 (21) 0.37 
    Controls 164 (67) 75 (31) 5 (2)  403 (83) 85 (17)  
PolymorphismGenotypesAlleles
rs2025804 AA AG GG P P 
    Total cases 47 (41) 51 (44) 17 (15) 0.21 145 (63) 85 (37) 0.37 
    Portion cases 28 (43) 30 (46) 7 (11) 0.76 86 (66) 44 (34) 0.78 
    Snack cases 17 (36) 20 (43) 10 (21) 0.02* 54 (57) 40 (43) 0.06 
    Controls 111 (44) 114 (46) 24 (10)  336 (67) 162 (33)  
rs1782754 GG GA AA P P 
    Total cases 56 (49) 47 (42) 10 (9) 0.68 159 (70) 67 (30) 0.85 
    Portion cases 33 (51) 28 (43) 4 (6) 0.76 94 (72) 36 (28) 0.78 
    Snack cases 21 (47) 18 (40) 6 (13) 0.77 60 (67) 30 (33) 0.43 
    Controls 88 (51) 68 (40) 16 (9)  244 (71) 100 (29)  
rs7529650 GG GA AA P P 
    Total cases 46 (40) 46 (40) 24 (20) 0.05 138 (59) 94 (41) 0.47 
    Portion cases 25 (38) 29 (45) 11 (17) 0.39 79 (61) 51 (39) 0.44 
    Snack cases 19 (40) 16 (33) 13 (27) 0.11 54 (56) 42 (44) 0.91 
    Controls 63 (32) 96 (49) 36 (19)  222 (57) 168 (43)  
rs1171265 AA AG GG P P 
    Total cases 44 (46) 41 (43) 11 (11) 0.14 129 (67) 63 (33) 0.17 
    Portion cases 23 (43) 24 (44) 7 (13) 0.37 70 (65) 38 (35) 0.47 
    Snack cases 19 (49) 16 (41) 4 (10) 0.17 54 (69) 24 (31) 0.17 
    Controls 86 (41) 82 (40) 40 (19)  254 (61) 162 (39)  
rs1137100 AA AG GG P P 
    Total cases 45 (49) 39 (42) 0 (9) 0.23 129 (70) 55 (30) 0.58 
    Portion cases 25 (52) 20 (42) 3 (6) 0.46 70 (73) 26 (27) 0.97 
    Snack cases 19 (45) 18 (43) 5 (12) 0.25 56 (67) 28 (33) 0.26 
    Controls 123 (55) 77 (35) 22 (10)  323 (73) 121 (27)  
rs1137101 GG GA AA P P 
    Total cases 31 (28) 47 (42) 34 (30) 0.12 109 (49) 115 (51) 0.99 
    Portion cases 14 (23) 25 (41) 22 (36) 0.46 53 (43) 69 (57) 0.97 
    Snack cases 16 (33) 20 (42) 12 (25) 0.09 52 (54) 44 (46) 0.33 
    Controls 52 (22) 122 (53) 58 (25)  226 (49) 238 (51)  
rs6673324 AA AG GG P P 
    Total cases 25 (27) 49 (53) 18 (20) 0.05 99 (54) 85 (46) 0.73 
    Portion cases 12 (23) 29 (57) 10 (20) 0.66 53 (52) 49 (48) 0.49 
    Snack cases 12 (31) 19 (49) 8 (20) 0.36 43 (55) 35 (45) 0.92 
    Controls 72 (36) 79 (40) 49 (24)  223 (56) 177 (44)  
rs1327116 AA AC CC P P 
    Total cases 57 (51) 46 (41) 9 (8) 0.92 160 (71) 64 (29) 0.99 
    Portion cases 31 (50) 27 (44) 4 (6) 0.57 89 (72) 35 (28) 0.99 
    Snack cases 24 (51) 18 (38) 5 (11) 0.96 66 (70) 28 (30) 0.76 
    Controls 133 (52) 98 (39) 23 (9)  366 (72) 144 (28)  
rs791607 TT CT CC P P 
    Total cases 90 (89) 11 (11) 0.10 191 (95) 11 (5) 0.08 
    Portion cases 50 (85) 9 (15) 0.57 109 (92) 9 (8) 0.54 
    Snack cases 39 (98) 1 (2) 0.01* 79 (99) 1 (1) 0.61 
    Controls 155 (81) 34 (18) 1 (1)  344 (91) 36 (9)  
rs4577902 TT CT CC P P 
    Total cases 75 (73) 27 (26) 1 (1) 0.32 177 (86) 29 (14) 0.42 
    Portion cases 42 (72) 15 (26) 1 (2) 0.32 99 (85) 17 (15) 0.30 
    Snack cases 31 (74) 11 (26) 0.006* 73 (87) 11 (13) 0.58 
    Controls 193 (79) 49 (20) 3 (1)  435 (89) 55 (11)  
rs2060736 CC CG GG P P 
    Total cases 44 (72) 16 (26) 1 (2) 0.36 104 (85) 18 (15) 0.71 
    Portion cases 17 (65) 9 (35) 0.18 43 (83) 9 (17) 0.83 
    Snack cases 14 (74) 5 (26) 0.22 33 (87) 5 (13) 0.63 
    Controls 138 (72) 46 (24) 8 (4)  322 (84) 62 (16)  
rs4731413 GG GA AA P P 
    Total cases 59 (65) 26 (29) 5 (6) 0.1 144 (80) 36 (20) 0.44 
    Portion cases 30 (65) 14 (31) 2 (4) 0.35 74 (80) 18 (20) 0.62 
    Snack cases 27 (64) 12 (29) 3 (7) 0.07 66 (79) 18 (21) 0.37 
    Controls 164 (67) 75 (31) 5 (2)  403 (83) 85 (17)  
*

P values are significant. Numbers in parenthesis are the percentages of the genotypes present in the different groups. For some sequences, only a 70–85% success rate could be reached due to a less efficient allele-specific PCR.

TABLE 4

Haplotype frequencies in the case populations compared with the control population

Haplotype identificationHaplotype sequenceTotal casesPPortionPSnackPControl
CCK_H1 CCGT 0.71 (153) 0.9 0.67 (82) 0.4 0.77 (71) 0.21 0.71 (268) 
CCK_H2 CCAA 0.14 (30) 0.53 0.15 (18) 0.77 0.13 (12) 0.48 0.16 (60) 
CCK_H3 GTAA 0.13 (28) 0.23 0.17 (21) 0.02* 0.08 (7) 0.51 0.1 (37) 
CCK_other  — — — — — — 0.03 (11) 
Lep_H1 GTC 0.62 (105) 0.42 0.60 (52) 0.71 0.68 (53) 0.03* 0.58 (252) 
Lep_H2 ATC 0.21 (26) 0.71 0.19 (16) 0.37 0.13 (10) 0.77 0.15 (64) 
Lep_H3 GTG 0.04 (7) 0.002* 0.06 (5) 0.06 0.03 (2) 0.01* 0.13 (56) 
Lep_H4 GCC 0.13 (22) 0.94 0.15 (13) 0.55 0.12 (9) 0.89 0.13 (55) 
Lep_other  — — — — — — 0.01 (5) 
Haplotype identificationHaplotype sequenceTotal casesPPortionPSnackPControl
CCK_H1 CCGT 0.71 (153) 0.9 0.67 (82) 0.4 0.77 (71) 0.21 0.71 (268) 
CCK_H2 CCAA 0.14 (30) 0.53 0.15 (18) 0.77 0.13 (12) 0.48 0.16 (60) 
CCK_H3 GTAA 0.13 (28) 0.23 0.17 (21) 0.02* 0.08 (7) 0.51 0.1 (37) 
CCK_other  — — — — — — 0.03 (11) 
Lep_H1 GTC 0.62 (105) 0.42 0.60 (52) 0.71 0.68 (53) 0.03* 0.58 (252) 
Lep_H2 ATC 0.21 (26) 0.71 0.19 (16) 0.37 0.13 (10) 0.77 0.15 (64) 
Lep_H3 GTG 0.04 (7) 0.002* 0.06 (5) 0.06 0.03 (2) 0.01* 0.13 (56) 
Lep_H4 GCC 0.13 (22) 0.94 0.15 (13) 0.55 0.12 (9) 0.89 0.13 (55) 
Lep_other  — — — — — — 0.01 (5) 

Data are frequency (n).

*

P values are significant.

TABLE 5

Physical genomic distance and D′ between haplotype SNPs

GeneSNPGenomic locationD′
CCK 1: rs6809785 42245074 SNP 1–2: 0.984 
 2: rs7611677 42251928 SNP 1–3: 0.924 
 3: rs6801844 42254089 SNP 1–4: 1 
 4: rs6791019 42254957 SNP 2–3: 0.941 
   SNP 2–4: 1 
   SNP 3–4: 0.945 
Leptin 1: rs4731413 127430083 SNP 1–2: 0.999 
 2: rs4577902 127436760 SNP 1–3: 1 
 3: rs2060736 127442525 SNP 2–3: 1 
GeneSNPGenomic locationD′
CCK 1: rs6809785 42245074 SNP 1–2: 0.984 
 2: rs7611677 42251928 SNP 1–3: 0.924 
 3: rs6801844 42254089 SNP 1–4: 1 
 4: rs6791019 42254957 SNP 2–3: 0.941 
   SNP 2–4: 1 
   SNP 3–4: 0.945 
Leptin 1: rs4731413 127430083 SNP 1–2: 0.999 
 2: rs4577902 127436760 SNP 1–3: 1 
 3: rs2060736 127442525 SNP 2–3: 1 

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This work was supported by Zon-MW Grant 016.036.322.

We thank Bobby Koeleman, PhD, of the Medical Genetics Department, University Medical Center Utrecht, the Netherlands, for his advise and assistance on the statistical analysis of the work presented in this article.

1.
Bellanger TM, Bray GA: Obesity related morbidity and mortality.
J La State Med Soc
157
:
S42
–S49,
2005
2.
Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, Kannel WB, Vasan RS: Obesity and the risk of heart failure.
N Engl J Med
347
:
305
–313,
2002
3.
Sharma AM, Chetty VT: Obesity, hypertension and insulin resistance.
Acta Diabetol
42
:
S3
–S8,
2005
4.
Barsh GS, Farooqi IS, O’Rahilly S: Genetics of body-weight regulation.
Nature
404
:
644
–651,
2000
5.
Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bugneres P, Lebouc Y, Froguel P, Guy-Grand B: A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.
Nature
392
:
398
–401,
1998
6.
Farooqi IS, Keogh JM, Yeo GSH, Lank EJ, Cheetam T, O’Rahilly S: Clinical spectrum obesity and mutations in the melanocortin 4 receptor gene.
N Engl J Med
348
:
085
–1095,
2003
7.
Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters: A Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans.
Nat Genet
19
:
155
–157,
1998
8.
van den Bree MBM, Eaves LJ, Dwyer JT: Genetic and environmental influences on eating patterns of twins aged ≥ 50 y.
Am J Clin Nutr
70
:
456
–465,
1999
9.
de Castro JM: Genetic influences on daily intake and meal patterns of humans.
Physiol Behav
53
:
777
–782,
1993
10.
de Castro JM: Independence of heritable influences on the food intake of free-living humans.
Nutrition
18
:
11
–16,
2002
11.
Steinle NI, Hsueh W, Snitker S, Pollin TI, Sakul H, St Jean P, Bell CJ, Mitchell BD, Shuldiner AR: Eating behaviour in the Old Order Amish: heritability analysis and a genome-wide linkage analysis.
Am J Clin Nutr
75
:
1098
–1106,
2002
12.
Tholin S, Rasmussen F, Tynelius P, Karlsson J: Genetic and environmental influences on eating behavior: the Swedish Young Male Twins study.
Am J Clin Nutr
81
:
564
–569,
2005
13.
Bouchard L, Drapeau V, Provencher V, Lemieux S, Chagnon Y, Rice T, Rao DC, Vohl MC, Tremblay A, Bouchard C, Perusse L: Neuromedin beta : a strong candidate gene linking eating behaviors and susceptibility to obesity.
Am J Clin Nutr
80
:
1478
–1486,
2004
14.
Montangue CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohemmaed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O’Rahilly S: Congenital leptin deficiency is associated with severe early-onset of obesity in humans.
Nature
387
:
903
–908,
1997
15.
Gibbs J, Young RC, Smith GP: Cholecystokinin decreases food intake in rats J Comp Physiol Psychol
84
:
488
,
1973
16.
Ballinger A, McLoughin L, Medbank S, Clark M: Cholecystokinin is a satiety hormone in humans at physiological post-prandial concentrations.
Clin Sci
89
:
375
–381,
1995
17.
Kissileff HR, Pi-Sunyer FX, Thornton J, Smith GP: Cholecystokinin decreases food intake in man.
Am J Clin Nutr
34
:
154
–160,
1981
18.
Boker LK, van Noord PAH, van der Schouw YT, Koot NV, Bueno de Mesquita HB, Riboli Egrobbee DE, Peeters PH: Prospect-EPIC Utrecht: study design and characteristics of the cohort population.
Eur J Epidemiol
17
:
1047
–1053,
2001
19.
Ocke MC, Bueno-de Mesquita HB, Goddijn HE, Jansen A, Pols MA, van Staveren WA, Kromhout D: The Dutch EPIC food frequency questionnaire. I Description of the questionnaire, and relative validity and reproducibility for food groups.
Int J Epidemiol
26
:
S37
–S48,
1997
20.
Voorrips LE, Ravelli AC, Dongelmans PC, Deurenberg P, Van Staveren WA: A physical activity questionnaire for the elderly.
Med Sci Sports Exerc
23
:
974
–979,
1991
21.
Nebert DW: Extreme discordant phenotype methodology: an intuitive approach to clinical pharmacogenetics.
EJP
410
:
107
–120,
2000
22.
Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps.
Bioinformatics
15,
2005
23.
Le Stunff C, Le Bihan C, Schork NJ, Bougneres P: A common promoter variant of the leptin gene is associated with changes in the relationship between serum leptin and fat mass in obese girls.
Diabetes
49
:
2196
–2200,
2000
24.
van Rossum CT, Hoebee B, van Baak MA, Mars M, Saris WH, Seidell JC: Genetic variation in the leptin receptor gene, leptin, and weight gain in young Dutch adults.
Obes Res
11
:
377
–386,
2003