The flood of confirmed genes for type 2 diabetes arising from genome-wide association (GWA) studies has started to raise questions as to the value of such research. Objections stem from the low individual allelic effect sizes (1.1–1.5) and from the recent observations that allele-counting summaries of the current known variants do not add much to the predictive models for type 2 diabetes (1). It has also been suggested that such a large number of variants of this effect size would be required to explain the known heritable component for diabetes that almost every gene could eventually be identified as a type 2 diabetes gene. If this did turn out to be the case, what would be the value of this knowledge (2)? These grumbles come despite the fact that prior to 2007, genetic research in common complex disease had made very little substantive progress either in the realms of candidate gene studies or in the previous generation of genome-wide studies that used microsatellite markers in a linkage paradigm. As noted by Rich, Norris, and Rotter in a commentary last year (3), the results from GWA studies have quickly turned from a trickle to a flood (4,,,,,,,,,,,16), and the most immediate advances from this are not disease prediction but, rather, in leading to a better understanding of etiopathogenesis together with identification of novel gene products and pathways as targets for intervention (17).

While the road to drug discovery on such a basis is undoubtedly long and rocky, in terms of disease etiology per se, we are uncovering a wealth of additional knowledge regarding the pathoetiology of type 2 diabetes. First, we are finding that the majority of genetic loci involved in type 2 diabetes are firmly rooted in the biology of the pancreatic β-cell and only associated with insulin resistance to a minor degree (18). This is epitomized by the seminal discovery of variants in the SLC30A8 gene, which appears to be involved in the uptake of zinc, which is in this case required for the production of insulin (13). This clearly may have an important role in determining some of the priorities in future diabetic research. While some genetic loci are very elusive to further study and point the finger at multiple genes encoding poorly understood gene products, many of these gene loci implicate the involvement of known pathways that may or may not have been greatly appreciated as important in type 2 diabetes. Obviously, the discovery that an obesity gene, FTO, also predisposes individuals to type 2 diabetes was a gratifying and sensible observation (5); however, the discovery that this gene is predominantly a behavioral gene involved in appetite/food choice has major implications for future pathways for weight reduction/diabetes prevention interventions (19).

In a less obvious fashion, the characterization of the melatonin receptor (MNTR1B) as a modulator of glycemic control and type 2 diabetes susceptibility has brought to the fore previous epidemiological observations regarding sleep patterns/melatonin levels and their role in type 2 diabetes (4,10,20,21). In this case, the genetic effect provides a logical anchor point to suggest the direct causality of poor sleep, melatonin levels, and disease susceptibility (22). In type 1 diabetes, a focus on a viral trigger for this disease has been strengthened by the discovery of a key viral defense gene, IFIH1, as playing a role in susceptibility to type 1 diabetes (23). In contrast, a novel uric acid transporter has been identified from GWA study approaches that harbors variants that predispose to gout (24). These variants have no associations with type 2 diabetes susceptibility or other features of the metabolic syndrome, suggesting that high uric acid levels seen in type 2 diabetes and the metabolic syndrome are not disease causing but may arise as a result of the metabolic disturbances apparent in type 2 diabetes. The use of GWA studies has also highlighted a common etiology of different diseases/phenotypes, with certain genes being involved in both cancer and diabetes—most interestingly, the opposing roles of TCF2 polymorphisms in prostate cancer and type 2 diabetes lend further support to previous epidemiology suggesting that type 2 diabetes confers protection from prostate cancer (6). In addition, JAZF1, a known oncogene (25), has also been show to harbor variants that modulate susceptibility to prostate cancer and diabetes (15,26,27). It is well established that shorter stature is associated with type 2 diabetes; however, the potential environmental/socioeconomic confounders limit the interpretation of this data. There is now a convergence between the list of genes associated with height in GWA studies and those affecting type 2 diabetes risk, with the JAZF1 locus associated with height, type 2 diabetes susceptibility, and fasting glucose in nondiabetic individuals, thus confirming a causal role for stature/growth phenotypes in type 2 diabetes susceptibility (28). In a similar fashion, a gene widely studied as a drug target for metabolic disease, PPARD, has also recently been shown to contain variants that modulate height (29).

Another interesting finding from GWA studies further changes our understanding of the way we view A1C as a measure of glycemic control. Recent studies from the Women's Health Study have identified common genetic variation in hexokinase 1 as a robust modifier of A1C in nondiabetic populations (9). In this issue of Diabetes, Bonnefond et al. (30) have shown that modulation of A1C levels by variants in the HK1 gene is not via a role in systemic glucose homeostasis or, thus, in type 2 diabetes etiology and remind us that A1C is also modulated by anemia independently of glucose control. It would appear that this may be due to local glucose handling in the erythrocyte, potentially affecting erythrocyte turnover. Importantly, HK1 is the predominant hexokinase in the erythrocyte that provides phosphorylated glucose as a precursor for both glycolysis and the pentose shunt in the erythrocyte. Mutations in HK1 (31) and in downstream activities involved in both glycolysis (pyruvate kinase) and the pentose shunt (glucose-6-phosphate dehydrogenase) are common causes of inherited hemolytic anemia and are known to affect A1C levels (32,33). Erythrocytes rely on glycolysis exclusively for ATP production, and the pentose shunt is the only mechanism by which erythrocytes can provide NADH for the reduction of glutathione, the major defense against oxidative stress in these cells. Genetic defects in this pathway are generally seen in the next step, glucose-6-phosphate dehydrogenase, which results in extreme sensitivity to environmental insults, leading to hemolytic anemia (32). Environmental stressors, which provoke anemia in individuals with a defective pentose shunt, include Fava beans (favism) or drugs such as primaquine. These genetic defects are highly prevalent in populations that have historically been highly exposed to malarial infection, such as Africa, India, the Middle East, and southern Europe; therefore, in studies of A1C, it will be very important to control for these defects (or indeed other hemoglobinopathies such as sickle cell) if study populations have a significant proportion of ancestry from these regions (Fig. 1).

FIG. 1.

Fava beans: Individuals with defective erythrocyte glucose handling (generally G6PD mutations) are sensitive to Fava beans, resulting in hemolytic anemia. The finding that HK1 variants modulate A1C levels through such an anemic mechanism, rather than by systemic glycemic control, reminds us of the widespread nature of such glucose handling defects in malarial endemic countries.

FIG. 1.

Fava beans: Individuals with defective erythrocyte glucose handling (generally G6PD mutations) are sensitive to Fava beans, resulting in hemolytic anemia. The finding that HK1 variants modulate A1C levels through such an anemic mechanism, rather than by systemic glycemic control, reminds us of the widespread nature of such glucose handling defects in malarial endemic countries.

So, despite the grumbles regarding GWA studies and disease prediction, it is clear that these insights demonstrate the immense value of the GWA studies performed during the last 3 years to diabetes research. We also have to realize that this is only the start of the genomic revolution. Indeed, the current reports are based on genotyping chips that query only the most common variation in the genome and represent a mere scratch on the surface of the genetic architecture of human complex disease. The use of new genotyping platforms with increased genetic content, the completion of the 1,000 genome project, and widespread adoption of whole-genome sequencing should provide another quantum jump in our understanding of interindividuality in disease processes and will hopefully allow us to provide truly personalized medicine in type 2 diabetes.

See accompanying original article, p. 2687.

No potential conflicts of interest relevant to this article were reported.

1.
van Hoek
M
,
Dehghan
A
,
Witteman
JC
,
van Duijn
CM
,
Uitterlinden
AG
,
Oostra
BA
,
Hofman
A
,
Sijbrands
EJ
,
Janssens
AC
:
Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study
.
Diabetes
2008
;
57
:
3122
3128
2.
Goldstein
DB
:
Common genetic variation and human traits
.
N Engl J Med
2009
;
360
:
1696
1698
3.
Rich
SS
,
Norris
JM
,
Rotter
JI
:
Genes associated with risk of type 2 diabetes identified by a candidate-wide association scan: as a trickle becomes a flood
.
Diabetes
2008
;
57
:
2915
2917
4.
Bouatia-Naji
N
,
Bonnefond
A
,
Cavalcanti-Proenca
C
,
Sparso
T
,
Holmkvist
J
,
Marchand
M
,
Delplanque
J
,
Lobbens
S
,
Rocheleau
G
,
Durand
E
,
De Graeve
F
,
Chèvre
JC
,
Borch-Johnsen
K
,
Hartikainen
AL
,
Ruokonen
A
,
Tichet
J
,
Marre
M
,
Weill
J
,
Heude
B
,
Tauber
M
,
Lemaire
K
,
Schuit
F
,
Elliott
P
,
Jørgensen
T
,
Charpentier
G
,
Hadjadj
S
,
Cauchi
S
,
Vaxillaire
M
,
Sladek
R
,
Visvikis-Siest
S
,
Balkau
B
,
Lévy-Marchal
C
,
Pattou
F
,
Meyre
D
,
Blakemore
AI
,
Jarvelin
MR
,
Walley
AJ
,
Hansen
T
,
Dina
C
,
Pedersen
O
,
Froguel
P
:
A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk
.
Nat Genet
2009
;
41
:
89
94
5.
Frayling
TM
,
Timpson
NJ
,
Weedon
MN
,
Zeggini
E
,
Freathy
RM
,
Lindgren
CM
,
Perry
JR
,
Elliott
KS
,
Lango
H
,
Rayner
NW
,
Shields
B
,
Harries
LW
,
Barrett
JC
,
Ellard
S
,
Groves
CJ
,
Knight
B
,
Patch
AM
,
Ness
AR
,
Ebrahim
S
,
Lawlor
DA
,
Ring
SM
,
Ben-Shlomo
Y
,
Jarvelin
MR
,
Sovio
U
,
Bennett
AJ
,
Melzer
D
,
Ferrucci
L
,
Loos
RJ
,
Barroso
I
,
Wareham
NJ
,
Karpe
F
,
Owen
KR
,
Cardon
LR
,
Walker
M
,
Hitman
GA
,
Palmer
CN
,
Doney
AS
,
Morris
AD
,
Smith
GD
,
Hattersley
AT
,
McCarthy
MI
:
A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity
.
Science
2007
;
316
:
889
894
6.
Gudmundsson
J
,
Sulem
P
,
Steinthorsdottir
V
,
Bergthorsson
JT
,
Thorleifsson
G
,
Manolescu
A
,
Rafnar
T
,
Gudbjartsson
D
,
Agnarsson
BA
,
Baker
A
,
Sigurdsson
A
,
Benediktsdottir
KR
,
Jakobsdottir
M
,
Blondal
T
,
Stacey
SN
,
Helgason
A
,
Gunnarsdottir
S
,
Olafsdottir
A
,
Kristinsson
KT
,
Birgisdottir
B
,
Ghosh
S
,
Thorlacius
S
,
Magnusdottir
D
,
Stefansdottir
G
,
Kristjansson
K
,
Bagger
Y
,
Wilensky
RL
,
Reilly
MP
,
Morris
AD
,
Kimber
CH
,
Adeyemo
A
,
Chen
Y
,
Zhou
J
,
So
WY
,
Tong
PC
,
Ng
MC
,
Hansen
T
,
Andersen
G
,
Borch-Johnsen
K
,
Jorgensen
T
,
Tres
A
,
Fuertes
F
,
Ruiz-Echarri
M
,
Asin
L
,
Saez
B
,
van Boven
E
,
Klaver
S
,
Swinkels
DW
,
Aben
KK
,
Graif
T
,
Cashy
J
,
Suarez
BK
,
van Vierssen Trip
O
,
Frigge
ML
,
Ober
C
,
Hofker
MH
,
Wijmenga
C
,
Christiansen
C
,
Rader
DJ
,
Palmer
CN
,
Rotimi
C
,
Chan
JC
,
Pedersen
O
,
Sigurdsson
G
,
Benediktsson
R
,
Jonsson
E
,
Einarsson
GV
,
Mayordomo
JI
,
Catalona
WJ
,
Kiemeney
LA
,
Barkardottir
RB
,
Gulcher
JR
,
Thorsteinsdottir
U
,
Kong
A
,
Stefansson
K
:
Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes
.
Nat Genet
2007
;
39
:
977
983
7.
Helgadottir
A
,
Thorleifsson
G
,
Magnusson
KP
,
Gretarsdottir
S
,
Steinthorsdottir
V
,
Manolescu
A
,
Jones
GT
,
Rinkel
GJ
,
Blankensteijn
JD
,
Ronkainen
A
,
Jääskeläinen
JE
,
Kyo
Y
,
Lenk
GM
,
Sakalihasan
N
,
Kostulas
K
,
Gottsäter
A
,
Flex
A
,
Stefansson
H
,
Hansen
T
,
Andersen
G
,
Weinsheimer
S
,
Borch-Johnsen
K
,
Jorgensen
T
,
Shah
SH
,
Quyyumi
AA
,
Granger
CB
,
Reilly
MP
,
Austin
H
,
Levey
AI
,
Vaccarino
V
,
Palsdottir
E
,
Walters
GB
,
Jonsdottir
T
,
Snorradottir
S
,
Magnusdottir
D
,
Gudmundsson
G
,
Ferrell
RE
,
Sveinbjornsdottir
S
,
Hernesniemi
J
,
Niemelä
M
,
Limet
R
,
Andersen
K
,
Sigurdsson
G
,
Benediktsson
R
,
Verhoeven
EL
,
Teijink
JA
,
Grobbee
DE
,
Rader
DJ
,
Collier
DA
,
Pedersen
O
,
Pola
R
,
Hillert
J
,
Lindblad
B
,
Valdimarsson
EM
,
Magnadottir
HB
,
Wijmenga
C
,
Tromp
G
,
Baas
AF
,
Ruigrok
YM
,
van Rij
AM
,
Kuivaniemi
H
,
Powell
JT
,
Matthiasson
SE
,
Gulcher
JR
,
Thorgeirsson
G
,
Kong
A
,
Thorsteinsdottir
U
,
Stefansson
K
:
The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm
.
Nat Genet
2008
;
40
:
217
224
8.
Lindgren
CM
,
Heid
IM
,
Randall
JC
,
Lamina
C
,
Steinthorsdottir
V
,
Qi
L
,
Speliotes
EK
,
Thorleifsson
G
,
Willer
CJ
,
Herrera
BM
,
Jackson
AU
,
Lim
N
,
Scheet
P
,
Soranzo
N
,
Amin
N
,
Aulchenko
YS
,
Chambers
JC
,
Drong
A
,
Luan
J
,
Lyon
HN
,
Rivadeneira
F
,
Sanna
S
,
Timpson
NJ
,
Zillikens
MC
,
Zhao
JH
,
Almgren
P
,
Bandinelli
S
,
Bennett
AJ
,
Bergman
RN
,
Bonnycastle
LL
,
Bumpstead
SJ
,
Chanock
SJ
,
Cherkas
L
,
Chines
P
,
Coin
L
,
Cooper
C
,
Crawford
G
,
Doering
A
,
Dominiczak
A
,
Doney
AS
,
Ebrahim
S
,
Elliott
P
,
Erdos
MR
,
Estrada
K
,
Ferrucci
L
,
Fischer
G
,
Forouhi
NG
,
Gieger
C
,
Grallert
H
,
Groves
CJ
,
Grundy
S
,
Guiducci
C
,
Hadley
D
,
Hamsten
A
,
Havulinna
AS
,
Hofman
A
,
Holle
R
,
Holloway
JW
,
Illig
T
,
Isomaa
B
,
Jacobs
LC
,
Jameson
K
,
Jousilahti
P
,
Karpe
F
,
Kuusisto
J
,
Laitinen
J
,
Lathrop
GM
,
Lawlor
DA
,
Mangino
M
,
McArdle
WL
,
Meitinger
T
,
Morken
MA
,
Morris
AP
,
Munroe
P
,
Narisu
N
,
Nordström
A
,
Nordström
P
,
Oostra
BA
,
Palmer
CN
,
Payne
F
,
Peden
JF
,
Prokopenko
I
,
Renström
F
,
Ruokonen
A
,
Salomaa
V
,
Sandhu
MS
,
Scott
LJ
,
Scuteri
A
,
Silander
K
,
Song
K
,
Yuan
X
,
Stringham
HM
,
Swift
AJ
,
Tuomi
T
,
Uda
M
,
Vollenweider
P
,
Waeber
G
,
Wallace
C
,
Walters
GB
,
Weedon
MN
Wellcome Trust Case Control Consortium
Witteman
JC
,
Zhang
C
,
Zhang
W
,
Caulfield
MJ
,
Collins
FS
,
Davey Smith
G
,
Day
IN
,
Franks
PW
,
Hattersley
AT
,
Hu
FB
,
Jarvelin
MR
,
Kong
A
,
Kooner
JS
,
Laakso
M
,
Lakatta
E
,
Mooser
V
,
Morris
AD
,
Peltonen
L
,
Samani
NJ
,
Spector
TD
,
Strachan
DP
,
Tanaka
T
,
Tuomilehto
J
,
Uitterlinden
AG
,
van Duijn
CM
,
Wareham
NJ
Hugh Watkins
Procardis Consortia
Waterworth
DM
,
Boehnke
M
,
Deloukas
P
,
Groop
L
,
Hunter
DJ
,
Thorsteinsdottir
U
,
Schlessinger
D
,
Wichmann
HE
,
Frayling
TM
,
Abecasis
GR
,
Hirschhorn
JN
,
Loos
RJ
,
Stefansson
K
,
Mohlke
KL
,
Barroso
I
,
McCarthy
MI
;
Giant Consortium
.
Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution
.
PLoS Genet
2009
;
5
:
e1000508
9.
Pare
G
,
Chasman
DI
,
Parker
AN
,
Nathan
DM
,
Miletich
JP
,
Zee
RY
,
Ridker
PM
:
Novel association of HK1 with glycated hemoglobin in a non-diabetic population: a genome-wide evaluation of 14,618 participants in the Women's Genome Health Study
.
PLoS Genet
2008
;
4
:
e1000312
10.
Prokopenko
I
,
Langenberg
C
,
Florez
JC
,
Saxena
R
,
Soranzo
N
,
Thorleifsson
G
,
Loos
RJ
,
Manning
AK
,
Jackson
AU
,
Aulchenko
Y
,
Potter
SC
,
Erdos
MR
,
Sanna
S
,
Hottenga
JJ
,
Wheeler
E
,
Kaakinen
M
,
Lyssenko
V
,
Chen
WM
,
Ahmadi
K
,
Beckmann
JS
,
Bergman
RN
,
Bochud
M
,
Bonnycastle
LL
,
Buchanan
TA
,
Cao
A
,
Cervino
A
,
Coin
L
,
Collins
FS
,
Crisponi
L
,
de Geus
EJ
,
Dehghan
A
,
Deloukas
P
,
Doney
AS
,
Elliott
P
,
Freimer
N
,
Gateva
V
,
Herder
C
,
Hofman
A
,
Hughes
TE
,
Hunt
S
,
Illig
T
,
Inouye
M
,
Isomaa
B
,
Johnson
T
,
Kong
A
,
Krestyaninova
M
,
Kuusisto
J
,
Laakso
M
,
Lim
N
,
Lindblad
U
,
Lindgren
CM
,
McCann
OT
,
Mohlke
KL
,
Morris
AD
,
Naitza
S
,
Orrù
M
,
Palmer
CN
,
Pouta
A
,
Randall
J
,
Rathmann
W
,
Saramies
J
,
Scheet
P
,
Scott
LJ
,
Scuteri
A
,
Sharp
S
,
Sijbrands
E
,
Smit
JH
,
Song
K
,
Steinthorsdottir
V
,
Stringham
HM
,
Tuomi
T
,
Tuomilehto
J
,
Uitterlinden
AG
,
Voight
BF
,
Waterworth
D
,
Wichmann
HE
,
Willemsen
G
,
Witteman
JC
,
Yuan
X
,
Zhao
JH
,
Zeggini
E
,
Schlessinger
D
,
Sandhu
M
,
Boomsma
DI
,
Uda
M
,
Spector
TD
,
Penninx
BW
,
Altshuler
D
,
Vollenweider
P
,
Jarvelin
MR
,
Lakatta
E
,
Waeber
G
,
Fox
CS
,
Peltonen
L
,
Groop
LC
,
Mooser
V
,
Cupples
LA
,
Thorsteinsdottir
U
,
Boehnke
M
,
Barroso
I
,
Van Duijn
C
,
Dupuis
J
,
Watanabe
RM
,
Stefansson
K
,
McCarthy
MI
,
Wareham
NJ
,
Meigs
JB
,
Abecasis
GR
:
Variants in MTNR1B influence fasting glucose levels
.
Nat Genet
2009
;
41
:
77
81
11.
Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research
Saxena
R
,
Voight
BF
,
Lyssenko
V
,
Burtt
NP
,
de Bakker
PI
,
Chen
H
,
Roix
JJ
,
Kathiresan
S
,
Hirschhorn
JN
,
Daly
MJ
,
Hughes
TE
,
Groop
L
,
Altshuler
D
,
Almgren
P
,
Florez
JC
,
Meyer
J
,
Ardlie
K
,
Bengtsson Boström
K
,
Isomaa
B
,
Lettre
G
,
Lindblad
U
,
Lyon
HN
,
Melander
O
,
Newton-Cheh
C
,
Nilsson
P
,
Orho-Melander
M
,
Råstam
L
,
Speliotes
EK
,
Taskinen
MR
,
Tuomi
T
,
Guiducci
C
,
Berglund
A
,
Carlson
J
,
Gianniny
L
,
Hackett
R
,
Hall
L
,
Holmkvist
J
,
Laurila
E
,
Sjögren
M
,
Sterner
M
,
Surti
A
,
Svensson
M
,
Svensson
M
,
Tewhey
R
,
Blumenstiel
B
,
Parkin
M
,
Defelice
M
,
Barry
R
,
Brodeur
W
,
Camarata
J
,
Chia
N
,
Fava
M
,
Gibbons
J
,
Handsaker
B
,
Healy
C
,
Nguyen
K
,
Gates
C
,
Sougnez
C
,
Gage
D
,
Nizzari
M
,
Gabriel
SB
,
Chirn
GW
,
Ma
Q
,
Parikh
H
,
Richardson
D
,
Ricke
D
,
Purcell
S
:
Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels
.
Science
2007
;
316
:
1331
1336
12.
Scott
LJ
,
Mohlke
KL
,
Bonnycastle
LL
,
Willer
CJ
,
Li
Y
,
Duren
WL
,
Erdos
MR
,
Stringham
HM
,
Chines
PS
,
Jackson
AU
,
Prokunina-Olsson
L
,
Ding
CJ
,
Swift
AJ
,
Narisu
N
,
Hu
T
,
Pruim
R
,
Xiao
R
,
Li
XY
,
Conneely
KN
,
Riebow
NL
,
Sprau
AG
,
Tong
M
,
White
PP
,
Hetrick
KN
,
Barnhart
MW
,
Bark
CW
,
Goldstein
JL
,
Watkins
L
,
Xiang
F
,
Saramies
J
,
Buchanan
TA
,
Watanabe
RM
,
Valle
TT
,
Kinnunen
L
,
Abecasis
GR
,
Pugh
EW
,
Doheny
KF
,
Bergman
RN
,
Tuomilehto
J
,
Collins
FS
,
Boehnke
M
:
A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants
.
Science
2007
;
316
:
1341
1345
13.
Sladek
R
,
Rocheleau
G
,
Rung
J
,
Dina
C
,
Shen
L
,
Serre
D
,
Boutin
P
,
Vincent
D
,
Belisle
A
,
Hadjadj
S
,
Balkau
B
,
Heude
B
,
Charpentier
G
,
Hudson
TJ
,
Montpetit
A
,
Pshezhetsky
AV
,
Prentki
M
,
Posner
BI
,
Balding
DJ
,
Meyre
D
,
Polychronakos
C
,
Froguel
P
:
A genome-wide association study identifies novel risk loci for type 2 diabetes
.
Nature
2007
;
445
:
881
885
14.
Steinthorsdottir
V
,
Thorleifsson
G
,
Reynisdottir
I
,
Benediktsson
R
,
Jonsdottir
T
,
Walters
GB
,
Styrkarsdottir
U
,
Gretarsdottir
S
,
Emilsson
V
,
Ghosh
S
,
Baker
A
,
Snorradottir
S
,
Bjarnason
H
,
Ng
MC
,
Hansen
T
,
Bagger
Y
,
Wilensky
RL
,
Reilly
MP
,
Adeyemo
A
,
Chen
Y
,
Zhou
J
,
Gudnason
V
,
Chen
G
,
Huang
H
,
Lashley
K
,
Doumatey
A
,
So
WY
,
Ma
RC
,
Andersen
G
,
Borch-Johnsen
K
,
Jorgensen
T
,
van Vliet-Ostaptchouk
JV
,
Hofker
MH
,
Wijmenga
C
,
Christiansen
C
,
Rader
DJ
,
Rotimi
C
,
Gurney
M
,
Chan
JC
,
Pedersen
O
,
Sigurdsson
G
,
Gulcher
JR
,
Thorsteinsdottir
U
,
Kong
A
,
Stefansson
K
:
A variant in CDKAL1 influences insulin response and risk of type 2 diabetes
.
Nat Genet
2007
;
39
:
770
775
15.
Zeggini
E
,
Scott
LJ
,
Saxena
R
,
Voight
BF
,
Marchini
JL
,
Hu
T
,
de Bakker
PI
,
Abecasis
GR
,
Almgren
P
,
Andersen
G
,
Ardlie
K
,
Boström
KB
,
Bergman
RN
,
Bonnycastle
LL
,
Borch-Johnsen
K
,
Burtt
NP
,
Chen
H
,
Chines
PS
,
Daly
MJ
,
Deodhar
P
,
Ding
CJ
,
Doney
AS
,
Duren
WL
,
Elliott
KS
,
Erdos
MR
,
Frayling
TM
,
Freathy
RM
,
Gianniny
L
,
Grallert
H
,
Grarup
N
,
Groves
CJ
,
Guiducci
C
,
Hansen
T
,
Herder
C
,
Hitman
GA
,
Hughes
TE
,
Isomaa
B
,
Jackson
AU
,
Jørgensen
T
,
Kong
A
,
Kubalanza
K
,
Kuruvilla
FG
,
Kuusisto
J
,
Langenberg
C
,
Lango
H
,
Lauritzen
T
,
Li
Y
,
Lindgren
CM
,
Lyssenko
V
,
Marvelle
AF
,
Meisinger
C
,
Midthjell
K
,
Mohlke
KL
,
Morken
MA
,
Morris
AD
,
Narisu
N
,
Nilsson
P
,
Owen
KR
,
Palmer
CN
,
Payne
F
,
Perry
JR
,
Pettersen
E
,
Platou
C
,
Prokopenko
I
,
Qi
L
,
Qin
L
,
Rayner
NW
,
Rees
M
,
Roix
JJ
,
Sandbaek
A
,
Shields
B
,
Sjögren
M
,
Steinthorsdottir
V
,
Stringham
HM
,
Swift
AJ
,
Thorleifsson
G
,
Thorsteinsdottir
U
,
Timpson
NJ
,
Tuomi
T
,
Tuomilehto
J
,
Walker
M
,
Watanabe
RM
,
Weedon
MN
,
Willer
CJ
Wellcome Trust Case Control Consortium
Illig
T
,
Hveem
K
,
Hu
FB
,
Laakso
M
,
Stefansson
K
,
Pedersen
O
,
Wareham
NJ
,
Barroso
I
,
Hattersley
AT
,
Collins
FS
,
Groop
L
,
McCarthy
MI
,
Boehnke
M
,
Altshuler
D
:
Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes
.
Nat Genet
2008
;
40
:
638
645
16.
Zeggini
E
,
Weedon
MN
,
Lindgren
CM
,
Frayling
TM
,
Elliott
KS
,
Lango
H
,
Timpson
NJ
,
Perry
JR
,
Rayner
NW
,
Freathy
RM
,
Barrett
JC
,
Shields
B
,
Morris
AP
,
Ellard
S
,
Groves
CJ
,
Harries
LW
,
Marchini
JL
,
Owen
KR
,
Knight
B
,
Cardon
LR
,
Walker
M
,
Hitman
GA
,
Morris
AD
,
Doney
AS
Wellcome Trust Case Control Consortium (WTCCC)
McCarthy
MI
,
Hattersley
AT
:
Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes
.
Science
2007
;
316
:
1336
1341
17.
Hirschhorn
JN
:
Genomewide association studies: illuminating biologic pathways
.
N Engl J Med
2009
;
360
:
1699
1701
18.
Florez
JC
:
Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes?
Diabetologia
2008
;
51
:
1100
1110
19.
Cecil
JE
,
Tavendale
R
,
Watt
P
,
Hetherington
MM
,
Palmer
CNA
:
An obesity-associated FTO gene variant and increased energy intake in children
.
N Engl J Med
2008
; 
359
:
2558
2566
20.
Lyssenko
V
,
Nagorny
CL
,
Erdos
MR
,
Wierup
N
,
Jonsson
A
,
Spégel
P
,
Bugliani
M
,
Saxena
R
,
Fex
M
,
Pulizzi
N
,
Isomaa
B
,
Tuomi
T
,
Nilsson
P
,
Kuusisto
J
,
Tuomilehto
J
,
Boehnke
M
,
Altshuler
D
,
Sundler
F
,
Eriksson
JG
,
Jackson
AU
,
Laakso
M
,
Marchetti
P
,
Watanabe
RM
,
Mulder
H
,
Groop
L
:
Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion
.
Nat Genet
2009
;
41
:
82
88
21.
Staiger
H
,
Machicao
F
,
Schafer
SA
,
Kirchhoff
K
,
Kantartzis
K
,
Guthoff
M
,
Silbernagel
G
,
Stefan
N
,
Haring
HU
,
Fritsche
A
:
Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine beta-cell function
.
PLoS One
2008
;
3
:
e3962
22.
Willyard
C
:
Hungry for sleep
.
Nat Med
2008
;
14
:
477
480
23.
Nejentsev
S
,
Walker
N
,
Riches
D
,
Egholm
M
,
Todd
JA
:
Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes
.
Science
2009
;
324
:
387
389
24.
Vitart
V
,
Rudan
I
,
Hayward
C
,
Gray
NK
,
Floyd
J
,
Palmer
CN
,
Knott
SA
,
Kolcic
I
,
Polasek
O
,
Graessler
J
,
Wilson
JF
,
Marinaki
A
,
Riches
PL
,
Shu
X
,
Janicijevic
B
,
Smolej-Narancic
N
,
Gorgoni
B
,
Morgan
J
,
Campbell
S
,
Biloglav
Z
,
Barac-Lauc
L
,
Pericic
M
,
Klaric
IM
,
Zgaga
L
,
Skaric-Juric
T
,
Wild
SH
,
Richardson
WA
,
Hohenstein
P
,
Kimber
CH
,
Tenesa
A
,
Donnelly
LA
,
Fairbanks
LD
,
Aringer
M
,
McKeigue
PM
,
Ralston
SH
,
Morris
AD
,
Rudan
P
,
Hastie
ND
,
Campbell
H
,
Wright
AF
:
SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout
.
Nat Genet
2008
;
40
:
437
442
25.
Koontz
JI
,
Soreng
AL
,
Nucci
M
,
Kuo
FC
,
Pauwels
P
,
van Den Berghe
H
,
Dal Cin
P
,
Fletcher
JA
,
Sklar
J
:
Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors
.
Proc Natl Acad Sci U S A
2001
;
98
:
6348
6353
26.
Frayling
TM
,
Colhoun
H
,
Florez
JC
:
A genetic link between type 2 diabetes and prostate cancer
.
Diabetologia
2008
;
51
:
1757
1760
27.
Thomas
G
,
Jacobs
KB
,
Yeager
M
,
Kraft
P
,
Wacholder
S
,
Orr
N
,
Yu
K
,
Chatterjee
N
,
Welch
R
,
Hutchinson
A
,
Crenshaw
A
,
Cancel-Tassin
G
,
Staats
BJ
,
Wang
Z
,
Gonzalez-Bosquet
J
,
Fang
J
,
Deng
X
,
Berndt
SI
,
Calle
EE
,
Feigelson
HS
,
Thun
MJ
,
Rodriguez
C
,
Albanes
D
,
Virtamo
J
,
Weinstein
S
,
Schumacher
FR
,
Giovannucci
E
,
Willett
WC
,
Cussenot
O
,
Valeri
A
,
Andriole
GL
,
Crawford
ED
,
Tucker
M
,
Gerhard
DS
,
Fraumeni
JF
 Jr
,
Hoover
R
,
Hayes
RB
,
Hunter
DJ
,
Chanock
SJ
:
Multiple loci identified in a genome-wide association study of prostate cancer
.
Nat Genet
2008
;
40
:
310
315
28.
Johansson
A
,
Marroni
F
,
Hayward
C
,
Franklin
CS
,
Kirichenko
AV
,
Jonasson
I
,
Hicks
AA
,
Vitart
V
,
Isaacs
A
,
Axenovich
T
,
Campbell
S
,
Dunlop
MG
,
Floyd
J
,
Hastie
N
,
Hofman
A
,
Knott
S
,
Kolcic
I
,
Pichler
I
,
Polasek
O
,
Rivadeneira
F
,
Tenesa
A
,
Uitterlinden
AG
,
Wild
SH
,
Zorkoltseva
IV
,
Meitinger
T
,
Wilson
JF
,
Rudan
I
,
Campbell
H
,
Pattaro
C
,
Pramstaller
P
,
Oostra
BA
,
Wright
AF
,
van Duijn
CM
,
Aulchenko
YS
,
Gyllensten
U
;
EUROSPAN Consortium. Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis
.
Hum Mol Genet
2009
;
18
:
373
380
29.
Burch
LR
,
Zhou
K
,
Donnelly
LA
,
Doney
AS
,
Brady
J
,
Goddard
C
,
Morris
AD
,
Hansen
MK
,
Palmer
CNA
:
A single nucleotide polymorphism on exon-4 of the gene encoding PPARdelta is associated with reduced height in adults and children
.
J Clin Endocrinol Metab
2009
;
94
:
2587
2593
30.
Bonnefond
A
,
Vaxillaire
M
,
Labrune
Y
,
Lecoeur
C
,
Chèvre
J-C
,
Bouatia-Naji
N
,
Cauchi
S
,
Balkau
B
,
Marre
M
,
Tichet
J
,
Riveline
J-P
,
Hadjadj
S
,
Gallois
Y
,
Czernichow
S
,
Hercberg
S
,
Kaakinen
M
,
Wiesner
S
,
Charpentier
S
,
Lévy-Marchal
C
,
Elliott
P
,
Jarvelin
M-R
,
Horber
F
,
Dina
C
,
Pedersen
O
,
Sladek
R
,
Meyre
D
,
Froguel
P
:
Genetic variant in HK1 is associated with a proanemic state and A1C but not other glycemic control–related traits
.
Diabetes
2009
;
58
:
2687
2697
31.
Valentine
WN
,
Oski
FA
,
Paglia
DE
,
Baughan
MA
,
Schneider
AS
,
Naiman
JL
:
Hereditary hemolytic anemia with hexokinase deficiency: role of hexokinase in erythrocyte aging
.
N Engl J Med
1967
;
276
:
1
11
32.
Beutler
E
:
G6PD deficiency
.
Blood
1994
;
84
:
3613
3636
33.
Keitt
AS
:
Pyruvate kinase deficiency and related disorders of red cell glycolysis
.
Am J Med
1966
;
41
:
762
785