OBJECTIVE

Cytokines contribute to pancreatic β-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the cytokines interleukin (IL)-1β + interferon (IFN)-γ and tumor necrosis factor (TNF)-α + IFN-γ in primary rat β-cells.

RESEARCH DESIGN AND METHODS

Fluorescence-activated cell sorter–purified rat β-cells were exposed to IL-1β + IFN-γ or TNF-α + IFN-γ for 6 or 24 h, and global gene expression was analyzed by microarray. Key results were confirmed by RT-PCR, and small-interfering RNAs were used to investigate the mechanistic role of novel and relevant transcription factors identified by pathway analysis.

RESULTS

Nearly 16,000 transcripts were detected as present in β-cells, with temporal differences in the number of genes modulated by IL-1β + IFNγ or TNF-α + IFN-γ. These cytokine combinations induced differential expression of inflammatory response genes, which is related to differential induction of IFN regulatory factor-7. Both treatments decreased the expression of genes involved in the maintenance of β-cell phenotype and growth/regeneration. Cytokines induced hypoxia-inducible factor-α, which in this context has a proapoptotic role. Cytokines also modified the expression of >20 genes involved in RNA splicing, and exon array analysis showed cytokine-induced changes in alternative splicing of >50% of the cytokine-modified genes.

CONCLUSIONS

The present study doubles the number of known genes expressed in primary β-cells, modified or not by cytokines, and indicates the biological role for several novel cytokine-modified pathways in β-cells. It also shows that cytokines modify alternative splicing in β-cells, opening a new avenue of research for the field.

Type 1 diabetes is an autoimmune disease characterized by a progressive and selective destruction of the pancreatic β-cells. During insulitis, activated macrophages and T-cells release cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the vicinity of the β-cells, contributing for β-cell dysfunction and apoptosis (1,2). Expression of TNF-α and IL-1β was observed in pancreas of patients with recent type 1 diabetes onset and in animal models of the disease (1,3), prompting clinical trials based on the use of blockers of TNF-α (4) or IL-1β (5) to prevent type 1 diabetes.

In vitro exposure of rodent or human β-cells to IL-1β + IFN-γ or TNF-α + IFN-γ, but not to any of these cytokines alone, triggers β-cell apoptosis (1,6). IL-1β + IFN-γ affects the expression of several gene networks in β-cells, modulating pro- and antiapoptotic pathways, expression of cytokines and chemokines, and decreasing expression of genes involved in β-cell function (2,6,,,10). Less is known about the genes induced by TNF-α; both cytokines induce the key transcription factor nuclear factor (NF)-κB (11), but they affect kinase cascade pathways differently, such as IκB kinase, with the potential to trigger a differential gene expression outcome (11,12). We have previously addressed this issue by using a target microarray, the Apochip (13), to compare IL-1β– and TNF-α–induced genes. The findings obtained indicated some differences between these cytokines, mostly related to intensity of gene expression (12). These observations, however, were biased by the choice and limited number of probes included in the Apochip. Moreover, neither the Apochip nor usually utilized cDNA arrays (7,9) have the ability to identify splice variants of genes. This is a significant limitation, since recent data suggest that regulation of alternative splicing is of major importance for regulation of proteomic diversity and for cell physiology/pathology (14,16).

Cytokine composition and its respective concentrations may vary during insulitis, depending on the timing, degree of islet infiltration, immune cells present, and the pancreatic β-cell responses to the immune assault (10). This may explain why blocking TNF-α or IL-1β at different stages of the pre-diabetic period may be more or less effective in preventing diabetes in rodent models (1,17), suggesting that the contribution of the different cytokines and their downstream signaling pathways may also vary between individual type 1 diabetic patients. This reinforces the need for understanding separately and in detail the gene networks downstream of IL-1β + IFN-γ and TNF-α + IFN-γ, with the ultimate goal of devising targeted and individualized therapies to preserve β-cells in early type 1 diabetes. We have presently addressed this question by using primary rat β-cells treated for 6 or 24 h with combinations of IL-1β + IFN-γ and TNF-α + IFN-γ and performing array analysis using first the latest Affymetrix microarray, covering >28,000 genes, and then the Affymetrix exon-array, covering ∼850,000 exons and having the potential to identify most splice variants present in a cell. This was followed by global analysis of gene expression using Ingenuity Pathway Analysis (IPA) software, which indicated networks of special interest for subsequent studies. The data obtained doubles the number of known genes expressed in primary rat β-cells, modified or not by cytokines, and identifies several novel cytokine-modified pathways in β-cells, including cytokines/chemokines, Krebs cycle genes, hormone receptors, and hypoxia-inducible factor (HIF)-1α–regulated genes. It also indicates that cytokines modify alternative splicing in β-cells, opening a new avenue of research in the field.

Cell culture and cytokine exposure; viability and Western blot assay; nitric oxide and chemokine (CC-motif) ligand (CCL) 5 measurement; sample preparation for array analysis; real-time RT-PCR and normal PCR; immunofluorescence; promoter in silico analysis and promoter reporter assay are available at the online appendix Supplementary Methods at http://diabetes.diabetesjournals.org/cgi/content/full/db09-1159/DC1.

Gene expression array data analysis.

The GeneChip Rat Genome 230 2.0 arrays (Affymetrix), containing 31,099 probesets representing >28,000 rat genes was used in the study. The GC-Robust MultiChip Average (GCRMA) (18) was used, as part of the GCRMA package in the Bioconductor site (http://www.bioconductor.org), to preprocess the raw data (CEL files). For the analysis, see Supplementary Methods. Pathway analysis was done by IPA 5.5 software.

Exon-array data analysis.

The CEL files corresponding to the GeneChip Rat Exon 1.0 ST Arrays (Affymetrix) were imported and analyzed by the ArrayAssist Exon software (Stratagene Software Solutions), as described in Supplementary Methods.

RNA interference.

Small-interfering RNA (siRNA) against activating factor (ATF) 4, HIF-1α, and IFN regulatory factor (IRF)-7 (supplementary Table 2), were used to knock down expression of the respective target genes. Allstars Negative Control siRNA (Qiagen, Venlo, Netherlands) was used as a negative control. Transfection using DharmaFECT1 (Thermo Scientific, Chicago, IL) was performed as previously described and validated (19).

Statistical analysis.

Comparisons between groups were carried out either by paired t test or by ANOVA followed by t tests with Bonferroni correction as required. A P ≤ 0.05 was considered as statistically significant. Array statistical analysis is described in Supplementary Methods.

Effect of IL-1β + IFN-γ or TNF-α + IFN-γ on the viability, nitric oxide production, and gene expression of rat β-cells.

β-Cells were exposed to IL-1β + IFN-γ or TNF-α + IFN-γ and collected at 6 and 24 h for array analysis. Viability was not affected by the cytokine treatment after 24 h (supplementary Fig. 1A), but there was a twofold increase in apoptosis after 72 h (supplementary Fig. 1A) without significant changes in the percentage of necrotic cells (data not shown). Both cytokine combinations increased nitric oxide (NO) production after 24 h of exposure (supplementary Fig. 1B), with higher induction by IL-1β + IFN-γ as compared with TNF-α + IFN-γ. These results are similar to our previous observations (12), confirming biological activity of the cytokines. In the array analysis, nearly 16,000 probe sets, corresponding to 7,991 genes, were detected as present in control and/or cytokine-treated β-cells (supplementary Table 3). TNF-α + IFN-γ modified the expression of a higher number of genes compared with IL-1β + IFN-γ at 6 h, while this was inverted at 24 h, with higher number of IL-1β + IFN-γ–modified genes (Fig. 1). At 6 and 24 h, 67 and 48%, respectively, of the total number of cytokine-modified genes was differentially induced by IL-1β + IFN-γ or TNF-α + IFN-γ. Supplementart Tables 4–7 list all transcripts considered as modified by the different cytokine combinations at 6 and 24 h and classified by IPA. In Table 1, selected genes with a putative role in β-cell function/dysfunction and death were classified by one of the investigators (D.L.E.), using an adaptation of a previously described in-house classification (7,9).

FIG. 1.

Effects of cytokine exposure on gene expression in FACS-purified rat β-cells. Ven diagram showing the number of β-cell genes with the expression modified by cytokines after exposure to IL-1β + IFN-γ (IL) or TNF-α + IFN-γ (TNF) for 6 and 24 h. The diagram shows genes modified by IL-1β + IFN-γ alone (left part of the figure), TNF-α + IFN-γ alone (right) or both (center). Results of three independent array experiments were analyzed. mRNA expression was considered as modified by cytokines when P < 0.02 and fold change ≥1.5 compared with control condition.

FIG. 1.

Effects of cytokine exposure on gene expression in FACS-purified rat β-cells. Ven diagram showing the number of β-cell genes with the expression modified by cytokines after exposure to IL-1β + IFN-γ (IL) or TNF-α + IFN-γ (TNF) for 6 and 24 h. The diagram shows genes modified by IL-1β + IFN-γ alone (left part of the figure), TNF-α + IFN-γ alone (right) or both (center). Results of three independent array experiments were analyzed. mRNA expression was considered as modified by cytokines when P < 0.02 and fold change ≥1.5 compared with control condition.

Close modal
TABLE 1

Selected genes modulated by cytokine treatment detected by array analysis

ProbeGenBankGene name/functional groupSymbol6 h
24 h
IL + IFNTNF + IFNIL + IFNTNF + IFN
  Arginine metabolism and NO formation      
1368266_at NM_017134 arg1 Arg1 0.65 ± 0.06 0.76 ± 0.16 0.15 ± 0.03 0.28 ± 0.18 
1370964_at BF283456 ASS Ass 5.93 ± 1.30 0.75 ± 2.55 14.21 ± 4.66 1.73 ± 1.35 
1387667_at L12562 iNOS2 Nos2 375.0 ± 59.78 109.3 ± 214.5 113.8 ± 16.03 57.80 ± 21.89 
  Glucose metabolism      
1386916_at NM_017321 Aconitase 1 (Krebs) Aco1 0.23 ± 0.12 0.38 ± 0.04 0.41 ± 0.04 0.56 ± 0.11 
1367589_at NM_024398 Aconitase 2, mitochondrial (Krebs) Aco2 0.45 ± 0.08 0.53 ± 0.07 0.61 ± 0.03 0.57 ± 0.06 
1375295_at AI009657 Citrate synthase (Krebs) Cs 0.73 ± 0.18 0.60 ± 0.04 1.42 ± 0.15 1.31 ± 0.05 
1367670_at NM_017005 Fumarase/fumarate hydratase 1 (Krebs) Fh1 0.34 ± 0.03 0.58 ± 0.04 0.64 ± 0.03 0.77 ± 0.04 
1370865_at BI277627 Isocitrate dehydrogenase 3 (NAD), γ (Krebs) Idh3g 0.61 ± 0.03 0.61 ± 0.09 0.56 ± 0.05 0.66 ± 0.02 
1388160_a_at AI171793 Isocitrate dehydrogenase 3 (NAD+) β (Krebs) Idh3B 0.67 ± 0.23 0.74 ± 0.10 1.30 ± 0.18 1.39 ± 0.05 
1372790_at BG671530 Malate dehydrogenase 1, NAD (soluble) (Krebs) Mdh1 0.47 ± 0.06 0.53 ± 0.09 0.20 ± 0.02 0.29 ± 0.02 
1372790_at BG671530 Malate dehydrogenase 1, NAD (soluble) (Krebs) Mdh1 0.47 ± 0.06 0.53 ± 0.09 0.20 ± 0.02 0.29 ± 0.02 
1367653_a_at NM_033235 Malate dehydrogenase 1, NAD (soluble) (Krebs) Mdh1 0.67 ± 0.12 0.66 ± 0.03 0.52 ± 0.02 0.52 ± 0.05 
1367653_a_at NM_033235 Malate dehydrogenase 1, NAD (soluble) (Krebs) Mdh1 0.67 ± 0.12 0.66 ± 0.03 0.52 ± 0.02 0.52 ± 0.05 
1369927_at NM_031151 Malate dehydrogenase 2, NAD (mitochondrial) (Krebs) Mdh2 0.53 ± 0.16 0.48 ± 0.05 0.86 ± 0.03 0.79 ± 0.09 
1390020_at BI277513 α-Ketoglutarate dehydrogenase (Krebs) αkdgh 0.69 ± 0.14 0.75 ± 0.09 0.44 ± 0.01 0.55 ± 0.06 
1380813_at AA891239 Succinate dehydrogenase complex (Krebs) Sdhb_predicted 0.97 ± 0.23 1.00 ± 0.08 0.66 ± 0.10 0.89 ± 0.09 
1372123_at AI172320 Succinate dehydrogenase complex (Krebs) Sdhb_predicted 0.84 ± 0.25 0.59 ± 0.11 1.43 ± 0.05 1.32 ± 0.07 
1373017_at AI237518 Succinyl-CoA synthetase, β-subunit (Krebs) Suclg2 0.84 ± 0.24 0.84 ± 0.06 0.65 ± 0.08 0.89 ± 0.02 
1367617_at NM_012495 Aldolase A (glycolysis) Aldoa 0.77 ± 0.08 0.66 ± 0.01 1.35 ± 0.13 1.27 ± 0.04 
1387312_a_at NM_012565 Glucokinase (glycolysis) Gck 0.20 ± 0.07 0.32 ± 0.14 0.22 ± 0.05 0.24 ± 0.10 
1383519_at BI294137 Hexokinase 2 (glycolysis) Hk2 4.99 ± 2.62 17.22 ± 5.44 16.77 ± 8.13 20.43 ± 10.53 
1367575_at NM_012554 Enolase 1, alpha (glycolysis) Eno1 0.70 ± 0.07 0.62 ± 0.04 1.71 ± 0.08 1.62 ± 0.19 
1388318_at BI279760 Phosphoglycerate kinase 1 (glycolysis) Pgk1 0.81 ± 0.10 0.70 ± 0.10 2.08 ± 0.16 1.61 ± 0.20 
1386864_at NM_053290 Phosphoglycerate mutase 1 (glycolysis) Pgam1 0.71 ± 0.16 0.70 ± 0.07 1.53 ± 0.10 1.52 ± 0.06 
1378382_at AI230014 Phosphoglycerate mutase family member 5 (glycolysis) Pgam5 1.05 ± 0.05 0.91 ± 0.05 1.64 ± 0.04 1.61 ± 0.10 
1391577_at BI293450 Phosphoglycerate mutase family member 5 (glycolysis) Pgam5 1.12 ± 0.07 0.90 ± 0.05 1.56 ± 0.04 1.52 ± 0.24 
1367864_at NM_031715 Phosphofructokinase, muscle (glycolysis) Pfkm 0.46 ± 0.11 0.43 ± 0.08 0.21 ± 0.04 0.23 ± 0.12 
1372182_at BM389769 Phosphofructokinase, platelet (glycolysis) Pfkp 4.98 ± 0.72 4.95 ± 0.34 7.76 ± 0.71 6.09 ± 0.13 
1387263_at NM_012624 Pyruvate kinase, liver and red blood cell (glycolysis) Pklr 0.51 ± 0.16 0.32 ± 0.22 0.15 ± 0.01 0.27 ± 0.06 
1368651_at M17685 Pyruvate kinase, liver and red blood cell (glycolysis) Pklr 0.51 ± 0.06 0.52 ± 0.07 0.20 ± 0.02 0.22 ± 0.15 
1370200_at BI284411 Glutamate dehydrogenase 1 Glud1 0.32 ± 0.06 0.24 ± 0.08 0.26 ± 0.01 0.31 ± 0.09 
1387878_at AW916644 Glutamate dehydrogenase 1 Glud1 0.38 ± 0.06 0.26 ± 0.02 0.45 ± 0.04 0.43 ± 0.03 
1370870_at M30596 Malic enzyme 1 Me1 0.51 ± 0.18 0.57 ± 0.09 0.54 ± 0.02 0.67 ± 0.08 
1370067_at NM_012600 Malic enzyme 1 Me1 0.56 ± 0.13 0.63 ± 0.09 0.56 ± 0.03 0.84 ± 0.07 
1386917_at NM_012744 Pyruvate carboxylase Pc 0.38 ± 0.15 0.75 ± 0.10 0.47 ± 0.09 0.61 ± 0.10 
1371388_at BM389223 Pyruvate dehydrogenase (lipoamide) β Pdhb 0.58 ± 0.10 0.52 ± 0.08 0.74 ± 0.05 0.73 ± 0.07 
1372229_at AI179119 Pyruvate dehydrogenase kinase, isoenzyme 3 (mapped) Pdk3 0.21 ± 0.01 0.54 ± 0.12 0.09 ± 0.03 0.49 ± 0.04 
1370848_at BI284218 Solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 4.25 ± 0.37 2.22 ± 0.28 12.80 ± 5.29 9.07 ± 2.86 
1387228_at NM_012879 Solute carrier family 2 (facilitated glucose transporter), member 2 Slc2a2 0.37 ± 0.03 0.38 ± 0.04 0.27 ± 0.04 0.37 ± 0.08 
  Lipid metabolism      
1367763_at D13921 Acetyl-coenzyme A acetyltransferase 1 Acat1 0.47 ± 0.00 0.59 ± 0.06 0.30 ± 0.05 0.23 ± 0.12 
1383416_at AA899304 Acetyl-coenzyme A acetyltransferase 1 Acat1 0.32 ± 0.08 0.39 ± 0.12 0.36 ± 0.05 0.34 ± 0.05 
1370939_at D90109 Acyl-CoA synthetase long-chain family member 1 Acsl1 0.78 ± 0.22 1.45 ± 0.11 0.61 ± 0.09 1.22 ± 0.05 
1368177_at NM_057107 Acyl-CoA synthetase long-chain family member 3 Acsl3 0.78 ± 0.16 0.51 ± 0.10 1.92 ± 0.39 1.34 ± 0.33 
1386926_at NM_053607 Acyl-CoA synthetase long-chain family member 5 Acsl5 1.67 ± 0.11 1.41 ± 0.15 2.35 ± 0.13 2.17 ± 0.15 
1367854_at NM_016987 ATP citrate lyase Acly 0.61 ± 0.06 0.66 ± 0.02 0.61 ± 0.01 0.71 ± 0.06 
1398716_at BG670822 Carnitine palmitoyltransferase 1a, liver Cpt1a 0.96 ± 0.41 0.79 ± 0.23 0.47 ± 0.04 0.43 ± 0.12 
1382882_x_at AA963228 Carnitine palmitoyltransferase 1a, liver Cpt1a 0.78 ± 0.04 0.78 ± 0.06 0.51 ± 0.07 0.44 ± 0.15 
1392166_at BE099838 Carnitine palmitoyltransferase 1a, liver Cpt1a 0.77 ± 0.19 0.83 ± 0.13 0.52 ± 0.03 0.48 ± 0.15 
1397700_x_at BG670822 Carnitine palmitoyltransferase 1a, liver Cpt1a 0.83 ± 0.47 0.91 ± 0.18 0.55 ± 0.05 0.40 ± 0.13 
1386927_at NM_012930 Carnitine palmitoyltransferase 2 Cpt2 0.29 ± 0.08 0.31 ± 0.03 0.17 ± 0.04 0.21 ± 0.09 
1367740_at M14400 Ceatine kinase, brain Ckb 0.19 ± 0.07 0.15 ± 0.06 0.12 ± 0.03 0.09 ± 0.09 
1390566_a_at BI301453 Creatine kinase, mitochondrial 1, ubiquitous Ckmt1 6.60 ± 0.94 5.46 ± 1.91 6.07 ± 1.56 3.82 ± 0.76 
1391534_at BG666735 Elongation of very-long-chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 2 (predicted) Elovl2_predicted 0.38 ± 0.28 0.36 ± 0.27 0.34 ± 0.04 0.39 ± 0.09 
1388108_at BE116152 ELOVL family member 6, elongation of long-chain fatty acids (yeast) Elovl6 0.43 ± 0.11 0.38 ± 0.08 0.36 ± 0.02 0.35 ± 0.06 
1367857_at NM_053445 Fatty acid desaturase 1 Fads1 0.21 ± 0.07 0.25 ± 0.07 0.28 ± 0.03 0.27 ± 0.14 
1367707_at NM_017332 Fatty acid synthase Fasn 0.33 ± 0.09 0.12 ± 0.08 0.50 ± 0.02 0.50 ± 0.14 
1371979_at AI170663 Sterol regulatory element– binding factor 2 (predicted) Srebf2_predicted 0.87 ± 0.16 0.87 ± 0.04 0.45 ± 0.06 0.43 ± 0.08 
1389611_at AA849857 VLDL receptor Vldlr 0.75 ± 0.13 0.34 ± 0.12 2.39 ± 0.20 2.28 ± 0.07 
1387455_a_at NM_013155 VLDL lipoprotein receptor Vldlr 0.63 ± 0.15 0.50 ± 0.09 2.79 ± 0.25 2.35 ± 0.09 
  Chemokines/cytokines/adhesion molecules      
1367973_at NM_031530 Chemokine (C-C motif) ligand 2 Ccl2 962.7 ± 378.5 987.1 ± 713.1 511.9 ± 362.3 124.1 ± 163.7 
1369814_at AF053312 Chemokine (C-C motif) ligand 20/ Ccl20 168.9 ± 15.58 62.2 ± 119.2 139.7 ± 15.95 14.86 ± 5.29 
1369983_at NM_031116 Chemokine (C-C motif) ligand 5 Ccl5 0.60 ± 1.55 77.43 ± 32.63 4.42 ± 2.94 182.1 ± 121.9 
1379935_at BF419899 Chemokine (C-C motif) ligand 7 Ccl7 131.3 ± 45.08 128.0 ± 74.85 59.30 ± 6.36 7.41 ± 2.48 
1387316_at NM_030845 Chemokine (C-X-C motif) ligand 1 (GRO-alpha) Cxcl1 392.4 ± 101.8 36.4 ± 155.4 189.8 ± 84.53 6.64 ± 3.37 
1372064_at BI296385 Similar to chemokine (C-X-C motif) ligand 16 Cxcl16 15.71 ± 2.78 19.87 ± 3.52 17.06 ± 1.37 24.66 ± 2.03 
1368760_at NM_031530 Chemokine (C-X-C motif) ligand 2/ Cxcl2 282.1 ± 61.17 15.91 ± 203.9 47.3 ± 21.72 1.54 ± 0.40 
1373544_at AI170387 Chemokine (C-X-C motif) ligand 9 Cxcl9 238.2 ± 232.7 588.0 ± 339.3 199.8 ± 88.6 288.0 ± 161.2 
1382454_at AI044222 Chemokine (C-X-C motif) ligand 9 Cxcl9 290.5 ± 172.6 913.8 ± 269.6 197.2 ± 216.5 334.7 ± 398.9 
1387202_at NM_012967 Intercellular adhesion molecule 1 Icam1 192.9 ± 29.93 541.5 ± 110.6 93.2 ± 29.84 152.8 ± 32.92 
1368375_a_at AF015718 IL-15 Il15 10.36 ± 0.45 32.08 ± 1.36 6.84 ± 1.37 20.42 ± 7.31 
1368474_at NM_012889 Vascular cell adhesion molecule 1 Vcam1 3.13 ± 0.95 34.83 ± 5.74 2.50 ± 0.86 28.37 ± 12.45 
  IFN-γ signaling      
1369956_at NM_053783 IFN-γ receptor 1 Ifngr 1.47 ± 0.34 1.46 ± 0.28 1.81 ± 0.26 1.74 ± 0.15 
1368073_at NM_012591 IRF-1 Irf1 66.39 ± 15.09 105.83 ± 19.34 19.85 ± 3.56 34.76 ± 2.17 
1371560_at AA893384 IRF-3 Irf3 0.81 ± 0.09 0.87 ± 0.23 0.70 ± 0.05 0.58 ± 0.06 
1383564_at BF411036 IRF- 7 Irf7 90.31 ± 27.87 427.28 ± 111.88 22.64 ± 11.73 104.71 ± 53.34 
1372097_at BF284262 IRF-8 Irf8 81.26 ± 2.01 57.63 ± 16.59 12.28 ± 2.73 3.57 ± 2.74 
1375796_at BI300770 IFN-γ–induced GTPase Igtp 32.18 ± 11.58 45.65 ± 10.40 7.96 ± 4.76 11.24 ± 9.04 
1373992_at AI408440 Similar to IFN-inducible GTPase MGC108823 140.5 ± 42.77 482.2 ± 131.4 144.4 ± 18.54 370.8 ± 95.71 
1377950_at AA955213 Similar to IFN-inducible GTPase RGD1309362 63.4 ± 13.8 235.0 ± 73.5 29.1 ± 11.5 142.2 ± 43.5 
1368835_at AW434718 STAT1 Stat1 14.50 ± 1.75 19.51 ± 1.89 5.50 ± 0.69 8.67 ± 1.42 
1372757_at BM386875 STAT1 Stat1 7.38 ± 0.85 8.27 ± 0.61 4.74 ± 0.49 7.28 ± 1.02 
1387354_at NM_032612 STAT1 Stat1 28.13 ± 9.16 23.80 ± 8.68 9.90 ± 1.91 13.39 ± 4.09 
1389571_at BG666368 STAT2 Stat2 17.98 ± 5.43 25.50 ± 2.68 32.83 ± 16.23 49.37 ± 12.41 
1370224_at BE113920 STAT3 Stat3 2.66 ± 0.43 2.86 ± 0.25 2.92 ± 0.66 1.91 ± 0.73 
1371781_at BI285863 STAT3 Stat3 2.02 ± 0.15 2.96 ± 0.34 1.62 ± 0.22 1.66 ± 0.28 
1387876_at AI177626 STAT5B Stat5b 1.33 ± 0.39 1.23 ± 0.11 3.24 ± 1.02 1.41 ± 0.31 
1383478_at BG671504 Janus kinase 1 Jak1 1.06 ± 0.16 0.98 ± 0.09 2.71 ± 0.11 2.74 ± 0.45 
1384060_at BG663208 Janus kinase 1 Jak1 1.31 ± 0.04 0.97 ± 0.23 3.71 ± 0.38 3.38 ± 0.45 
1368856_at NM_031514 Janus kinase 2 Jak2 9.74 ± 5.58 17.88 ± 3.18 4.23 ± 1.48 5.79 ± 1.98 
1380110_at AI229643 Janus kinase 2 Jak2 12.28 ± 1.16 14.90 ± 2.81 7.27 ± 0.75 9.56 ± 1.54 
1368251_at NM_012855 Janus kinase 3 Jak3 1.46 ± 0.12 3.24 ± 0.85 0.99 ± 0.24 1.53 ± 0.20 
1376666_at AI170864 Suppressor of cytokine signaling 6 (predicted) Socs6_predicted 0.90 ± 0.17 1.28 ± 0.25 1.51 ± 0.08 1.37 ± 0.09 
1391484_at BF284786 Suppressor of cytokine signaling 7 (predicted) Socs7_predicted 1.32 ± 0.06 1.53 ± 0.13 1.25 ± 0.03 1.41 ± 0.18 
  NF-κB regulation      
1383474_at BI274988 IL-1 receptor–associated kinase 2 Irak2 3.55 ± 0.66 3.57 ± 1.51 3.01 ± 0.20 1.34 ± 0.23 
1370968_at AA858801 NFκ light-chain gene enhancer in B-cells 1, p105 Nfkb1 19.06 ± 3.30 17.76 ± 0.97 7.67 ± 1.59 7.48 ± 1.72 
1389538_at AW672589 NFκ light-chain gene enhancer in B-cells inhibitor, α Nfkbia 55.16 ± 26.23 82.84 ± 18.93 25.93 ± 8.42 20.09 ± 5.05 
1367943_at NM_030867 NFκ light-chain gene enhancer in B-cells inhibitor, β Nfkbib 4.40 ± 1.97 5.78 ± 0.95 7.26 ± 2.31 5.67 ± 1.34 
1375989_a_at AI170362 NFκ light polypeptide gene enhancer in B-cells 2, p49/p100 Nfkb2 12.32 ± 2.84 18.22 ± 5.02 10.63 ± 6.55 11.33 ± 5.34 
1376835_at BI293600 NFκ light polypeptide gene enhancer in B-cells inhibitor, έ Nfkbie 11.21 ± 3.38 41.27 ± 4.76 2.04 ± 1.40 7.89 ± 1.86 
1378032_at AI176265 NFκ light polypeptide gene enhancer in B-cells inhibitor, ζ (predicted) Nfkbiz_predicted 12.91 ± 2.15 9.86 ± 1.36 13.48 ± 2.26 10.71 ± 1.32 
  Others transcription factors      
1379368_at AI237606 B-cell leukemia/lymphoma 6 (predicted) Bcl6_predicted 1.90 ± 0.90 2.23 ± 0.86 9.63 ± 1.51 10.86 ± 2.22 
1385592_at BI289386 Bcl6 interacting corepressor (predicted) Bcor_predicted 1.34 ± 0.04 1.53 ± 0.11 2.48 ± 0.52 1.76 ± 0.07 
1391632_at AA964568 CCAAT/enhancer binding protein (C/EBP), δ Cebpd 0.74 ± 0.05 0.60 ± 0.03 2.21 ± 0.63 1.74 ± 0.09 
1387343_at NM_013154 CCAAT/enhancer binding protein (C/EBP), δ Cebpd 2.34 ± 0.36 1.11 ± 0.10 10.82 ± 3.47 5.42 ± 0.99 
1375043_at BF415939 FBJ murine osteosarcoma viral oncogene homolog Fos 0.33 ± 0.08 0.70 ± 0.18 0.33 ± 0.07 0.29 ± 0.28 
1388761_at AI180339 Histone deacetylase 1 (predicted) Hdac1_predicted 0.59 ± 0.04 0.72 ± 0.09 0.34 ± 0.05 0.56 ± 0.02 
1396820_at AW530195 Histone deacetylase 1 (predicted) Hdac1_predicted 0.97 ± 0.16 0.99 ± 0.24 0.54 ± 0.02 0.56 ± 0.03 
1370908_at AA892297 Histone deacetylase 2 Hdac2 0.61 ± 0.04 0.97 ± 0.16 0.73 ± 0.05 0.82 ± 0.02 
1387076_at NM_024359 HIF-1, α-subunit Hif1a 2.02 ± 0.17 1.58 ± 0.31 2.07 ± 0.20 2.16 ± 0.19 
1369681_at NM_017339 ISL1 transcription factor, LIM/homeodomain 1 Isl1 0.53 ± 0.08 0.14 ± 0.05 0.31 ± 0.23 0.29 ± 0.06 
1393138_at BE329377 Jun D proto-oncogene Jund 1.31 ± 0.10 1.43 ± 0.05 2.25 ± 0.23 1.83 ± 0.23 
1369516_at NM_022852 Pancreatic and duodenal homeobox gene 1 Pdx1 1.01 ± 0.23 0.21 ± 0.03 0.49 ± 0.06 0.25 ± 0.21 
1369242_at NM_013001 Paired box gene 6 Pax6 0.50 ± 0.01 0.52 ± 0.08 0.35 ± 0.04 0.53 ± 0.05 
1374404_at BI288619 Proto-oncogene c-jun Jun 2.17 ± 1.36 2.44 ± 1.09 4.95 ± 0.94 2.76 ± 0.36 
1369788_s_at NM_021835 Proto-oncogene c-jun Jun 4.71 ± 1.35 6.30 ± 1.77 7.39 ± 0.13 6.65 ± 1.20 
1389528_s_at BI288619 Proto-oncogene c-jun Jun 4.00 ± 0.93 3.05 ± 0.68 9.12 ± 1.52 7.04 ± 2.01 
  Hormones      
1387235_at NM_021655 Chromogranin A Chga 0.64 ± 0.16 0.65 ± 0.01 0.30 ± 0.02 0.27 ± 0.05 
1368034_at NM_012526 Chromogranin B Chgb 0.79 ± 0.13 0.66 ± 0.02 0.30 ± 0.02 0.35 ± 0.04 
1369888_at NM_012707 Glucagon Gcg 0.71 ± 0.04 0.77 ± 0.06 0.10 ± 0.01 0.16 ± 0.06 
1387815_at NM_019129 Insulin 1 Ins1 0.94 ± 0.09 1.04 ± 0.12 0.75 ± 0.06 0.79 ± 0.02 
1370077_at NM_019130 Insulin 2 Ins2 0.86 ± 0.07 0.99 ± 0.09 0.68 ± 0.03 0.75 ± 0.01 
1387660_at M25390 Islet amyloid polypeptide Iapp 0.86 ± 0.10 0.85 ± 0.02 0.48 ± 0.03 0.60 ± 0.06 
1368559_at NM_017091 Proprotein convertase subtilisin/kexin type 1 Pcsk1 0.48 ± 0.18 0.48 ± 0.07 0.18 ± 0.03 0.27 ± 0.05 
1387247_at M83745 Proprotein convertase subtilisin/kexin type 1 Pcsk1 0.41 ± 0.14 0.56 ± 0.06 0.17 ± 0.02 0.23 ± 0.14 
1387155_at NM_012746 Proprotein convertase subtilisin/kexin type 2 Pcsk2 0.78 ± 0.08 0.76 ± 0.08 0.45 ± 0.02 0.58 ± 0.04 
1397662_at BF395791 Proprotein convertase subtilisin/kexin type 2 Pcsk2 0.92 ± 0.17 1.05 ± 0.08 0.26 ± 0.04 0.55 ± 0.14 
1367778_at NM_019331 Proprotein convertase subtilisin/kexin type 3 Pcsk3 0.80 ± 0.06 0.51 ± 0.01 0.67 ± 0.05 0.57 ± 0.03 
1367762_at NM_012659 Somatostatin Sst 0.48 ± 0.06 0.48 ± 0.04 0.08 ± 0.01 0.08 ± 0.08 
  Hormone receptors      
1369787_at NM_012688 Cholecystokinin A receptor Cckar 0.23 ± 0.04 0.25 ± 0.04 0.06 ± 0.01 0.11 ± 0.12 
1368481_at NM_012714 Gastric inhibitory polypeptide receptor Gipr 0.55 ± 0.05 0.64 ± 0.16 0.14 ± 0.02 0.12 ± 0.08 
1369699_at NM_012728 GLP-1 receptor Glp1r 0.47 ± 0.34 0.96 ± 0.26 0.32 ± 0.04 0.39 ± 0.08 
1368924_at NM_017094 Growth hormone receptor Ghr 0.41 ± 0.07 0.49 ± 0.17 0.31 ± 0.06 0.44 ± 0.07 
1370384_a_at M57668 Prolactin receptor Prlr 0.36 ± 0.12 0.38 ± 0.18 0.17 ± 0.06 0.23 ± 0.20 
1370789_a_at L48060 Prolactin receptor Prlr 0.15 ± 0.08 0.38 ± 0.14 0.21 ± 0.01 0.21 ± 0.05 
1376944_at AI407163 Prolactin receptor Prlr 0.41 ± 0.03 0.49 ± 0.03 0.17 ± 0.04 0.35 ± 0.11 
1392612_at AW142962 Prolactin receptor Prlr 0.37 ± 0.11 0.50 ± 0.12 0.13 ± 0.03 0.14 ± 0.10 
1387177_at NM_017238 Vasoactive intestinal peptide receptor 2 Vipr2 0.35 ± 0.07 0.36 ± 0.06 0.13 ± 0.02 0.11 ± 0.03 
  Free radical scavanger/DNA damage      
1367995_at NM_012520 Catalase Cat 0.79 ± 0.09 0.72 ± 0.09 1.96 ± 0.14 2.12 ± 0.29 
1367774_at NM_031509 Glutathione S-transferase A3 Gsta3 0.58 ± 0.19 0.45 ± 0.16 6.34 ± 1.77 1.78 ± 0.13 
1389832_at BE113459 Glutathione S-transferase, ω 1 Gsto1 0.62 ± 0.12 0.66 ± 0.04 1.54 ± 0.15 1.59 ± 0.05 
1387023_at NM_031154 Glutathione S-transferase, μ type 3 Gstm3 0.38 ± 0.06 0.38 ± 0.04 0.14 ± 0.01 0.12 ± 0.05 
1388122_at X02904 Glutathione S-transferase, π 2 Gstp2 0.83 ± 0.32 0.52 ± 0.14 4.61 ± 1.84 6.30 ± 2.10 
1372016_at BI287978 Growth arrest and DNA damage–inducible 45 β Gadd45b 44.52 ± 6.02 21.01 ± 34.64 131.03 ± 53.38 38.81 ± 10.31 
1388792_at AI599423 Growth arrest and DNA damage–inducible 45 γ Gadd45g 3.85 ± 1.06 2.43 ± 0.88 3.53 ± 0.48 1.89 ± 0.54 
1388267_a_at M24327 Metallothionein 1a Mt1a 2.41 ± 1.74 3.61 ± 1.23 26.36 ± 4.49 30.52 ± 4.33 
1371237_a_at AF411318 Metallothionein 1a Mt1a 3.02 ± 1.19 4.03 ± 1.07 36.70 ± 11.37 40.64 ± 9.73 
1374911_at AW251534 Oxidative stress responsive gene RGD1303142 1.01 ± 1.07 1.00 ± 0.34 8.43 ± 2.51 6.51 ± 0.66 
1372941_at BI273897 p53 and DNA damage regulated 1 Pdrg1 2.01 ± 0.50 1.30 ± 0.03 2.61 ± 0.18 2.07 ± 0.07 
1380071_at BI285978 Poly (ADP-ribose) polymerase family, member 12 (predicted) Parp12_predicted 7.04 ± 1.25 8.87 ± 0.94 2.89 ± 0.13 4.96 ± 0.65 
1383251_at AW524533 Poly (ADP-ribose) polymerase family, member 2 (predicted) Parp2_predicted 0.99 ± 0.18 0.77 ± 0.20 1.22 ± 0.09 1.40 ± 0.13 
1376144_at AA819679 Poly (ADP-ribose) polymerase family, member 9 (predicted) Parp9_predicted 27.68 ± 9.82 48.25 ± 13.19 15.17 ± 1.94 22.40 ± 2.13 
1370173_at BG671549 Superoxide dismutase 2, mitochondrial Sod2 6.74 ± 0.41 7.02 ± 0.19 7.51 ± 1.27 5.53 ± 0.35 
1370172_at AA892254 Superoxide dismutase 2, mitochondrial Sod2 8.69 ± 0.50 9.23 ± 0.82 13.07 ± 0.94 9.18 ± 0.63 
  Endoplasmic reticulum stress/apoptosis related      
1369268_at NM_012912 ATF3 Atf3 15.73 ± 3.69 23.27 ± 4.00 53.89 ± 24.87 26.59 ± 27.09 
1367624_at NM_024403 ATF4 Atf4 1.33 ± 0.08 1.07 ± 0.05 2.32 ± 0.27 2.16 ± 0.12 
1368066_at NM_053812 BCL2-antagonist/killer 1 Bak1 6.45 ± 3.37 5.77 ± 0.93 3.83 ± 0.76 6.81 ± 2.79 
1369122_at AF235993 Bcl2-associated X protein Bax 1.17 ± 0.06 1.24 ± 0.06 2.34 ± 0.22 2.32 ± 0.22 
1377759_at BG666928 BH3-interacting domain death agonist Bid 6.29 ± 1.66 3.48 ± 1.36 9.39 ± 1.30 4.30 ± 0.71 
1370283_at M14050 Bip Hspa5 0.89 ± 0.10 0.91 ± 0.05 1.46 ± 0.03 1.35 ± 0.06 
1370283_at M14050 Bip Hspa5 0.89 ± 0.10 0.91 ± 0.05 1.46 ± 0.03 1.35 ± 0.06 
1381173_at BG375010 Caspase 4, apoptosis-related cysteine peptidase Casp4 17.97 ± 7.54 15.89 ± 5.15 5.70 ± 0.89 17.31 ± 4.98 
1387818_at NM_053736 Caspase 4, apoptosis-related cysteine peptidase Casp4 18.89 ± 7.24 26.13 ± 13.11 41.24 ± 27.83 65.61 ± 19.29 
1389170_at BF283754 Caspase 7 Casp7 0.40 ± 0.12 0.31 ± 0.18 0.57 ± 0.09 0.72 ± 0.08 
1367529_at BE113989 Derlin1 RGD1311835 0.81 ± 0.06 0.78 ± 0.08 1.52 ± 0.20 1.44 ± 0.08 
1374581_at BM384392 Derlin1 RGD1311835 0.91 ± 0.08 0.80 ± 0.09 1.73 ± 0.18 1.43 ± 0.13 
1389615_at BI284801 Derlin1 RGD1311835 0.58 ± 0.19 0.55 ± 0.02 2.34 ± 0.25 2.07 ± 0.17 
1369590_a_at NM_024134 Chop Ddit3 1.66 ± 0.27 1.19 ± 0.33 7.86 ± 1.11 7.10 ± 0.91 
1383011_at AI501182 Eukaryotic translation initiation factor 2A Eif2a 1.62 ± 0.09 1.62 ± 0.25 1.86 ± 0.20 1.70 ± 0.05 
1388898_at AI236601 Heat shock 105 kDa/110 kDa protein 1 Hsph1 0.71 ± 0.08 0.74 ± 0.15 2.01 ± 0.66 1.50 ± 0.20 
1385620_at BF525282 Heat shock 105 kDa/110 kDa protein 1 Hsph1 0.54 ± 0.07 0.31 ± 0.15 3.56 ± 0.85 1.35 ± 0.20 
1388721_at BG380282 Heat shock 22 kDa protein 8 Hspb8 35.81 ± 13.54 12.67 ± 5.18 9.02 ± 2.86 5.92 ± 2.36 
1368247_at NM_031971 Heat shock 70 kD protein 1A Hspa1a 1.21 ± 0.16 1.25 ± 0.23 5.57 ± 1.02 1.52 ± 1.14 
1370912_at BI278231 Heat shock 70 kD protein 1B (mapped) Hspa1b 1.19 ± 0.26 1.17 ± 0.35 6.15 ± 1.09 2.03 ± 1.48 
1388851_at BI282281 Heat shock 70 kDa protein 9A (predicted) Hspa9a_predicted 0.80 ± 0.07 0.69 ± 0.03 1.97 ± 0.10 1.91 ± 0.12 
1386894_at NM_022229 Heat shock protein 1 (chaperonin) Hspd1 0.52 ± 0.01 0.49 ± 0.01 1.37 ± 0.11 1.24 ± 0.05 
1372701_at AI237597 Heat shock protein 1, α Hspca 0.76 ± 0.12 0.76 ± 0.18 2.79 ± 0.20 1.63 ± 0.26 
1388850_at BG671521 Heat shock protein 1, α Hspca 0.67 ± 0.06 0.79 ± 0.09 3.06 ± 0.68 1.66 ± 0.27 
1398240_at NM_024351 Heat shock protein 8 Hspa8 0.66 ± 0.06 0.68 ± 0.08 1.51 ± 0.10 1.21 ± 0.05 
1368195_at NM_134419 Hspb-associated protein 1 Hspbap1 0.81 ± 0.77 1.00 ± 0.25 3.89 ± 0.30 2.22 ± 0.34 
1370174_at BI284349 Myeloid differentiation primary response gene 116 Myd116 6.11 ± 0.81 6.55 ± 4.61 21.46 ± 2.39 9.67 ± 6.56 
1382615_at BI284366 Sec61 α1 subunit (S. cerevisiae) Sec61a1 0.76 ± 0.18 0.97 ± 0.09 0.75 ± 0.29 0.54 ± 0.04 
1375659_at BG381529 Sec61, α-subunit 2 (S. cerevisiae) (predicted) Sec61a2_predicted 0.77 ± 0.06 0.84 ± 0.03 0.71 ± 0.04 0.81 ± 0.01 
1372533_at AI175790 Similar to mKIAA0212 protein (predicted) edem 1.35 ± 0.12 2.06 ± 0.14 1.44 ± 0.05 1.51 ± 0.16 
1370695_s_at AB020967 Tribbles homolog 3 (Drosophila) Trib3 1.88 ± 0.76 0.88 ± 0.13 8.15 ± 3.61 7.74 ± 0.85 
1370694_at AB020967 Tribbles homolog 3 (Drosophila) Trib3 1.94 ± 1.04 1.16 ± 0.23 9.76 ± 1.28 7.81 ± 0.47 
1386321_s_at H31287 Tribbles homolog 3 (Drosophila) Trib3 2.12 ± 0.61 1.30 ± 0.16 14.66 ± 2.32 10.47 ± 1.31 
1369065_a_at NM_017290 Serca2 Atp2a2 0.40 ± 0.08 0.45 ± 0.07 0.21 ± 0.02 0.25 ± 0.07 
1370426_a_at AI175492 Serca2 Atp2a2 0.51 ± 0.06 0.52 ± 0.03 0.63 ± 0.06 0.65 ± 0.03 
  Cell cycle      
1390343_at AA998893 Cyclin C Ccnc 0.61 ± 0.15 0.59 ± 0.03 0.48 ± 0.01 0.68 ± 0.04 
1389101_at BE120340 Cyclin C Ccnc 0.90 ± 0.14 0.81 ± 0.21 1.33 ± 0.21 1.62 ± 0.04 
1371643_at AW143798 Cyclin D1 Ccnd1 0.48 ± 0.12 0.69 ± 0.14 0.43 ± 0.12 0.55 ± 0.17 
1369935_at NM_012766 Cyclin D3 Ccnd3 0.38 ± 0.11 0.52 ± 0.02 0.62 ± 0.12 0.62 ± 0.10 
1371953_at AI408309 Cyclin G2 (predicted) Ccng2_predicted 4.59 ± 0.72 4.51 ± 1.85 2.45 ± 0.33 2.54 ± 0.37 
1388370_at AA945706 Cyclin I (predicted) Ccni_predicted 0.93 ± 0.06 1.05 ± 0.06 0.74 ± 0.02 0.88 ± 0.04 
1368050_at NM_053662 Cyclin L1 Ccnl1 1.61 ± 0.35 1.96 ± 0.55 2.76 ± 0.47 1.80 ± 0.76 
1390815_at BF282870 Cyclin M1 (predicted) Cnnm1_predicted 1.08 ± 0.11 0.76 ± 0.17 0.49 ± 0.04 0.38 ± 0.05 
1391270_at BE112177 Cyclin M3 (predicted) Cnnm3_predicted 0.37 ± 0.05 0.33 ± 0.05 0.19 ± 0.04 0.37 ± 0.07 
1384214_a_at AI045459 Cyclin T2 (predicted) Ccnt2_predicted 0.50 ± 0.23 0.75 ± 0.30 0.27 ± 0.06 0.42 ± 0.09 
1390470_at BE107044 Cyclin T2 (predicted) Ccnt2_predicted 1.73 ± 0.29 1.21 ± 0.12 0.53 ± 0.09 0.71 ± 0.16 
  Splicing machinery      
  Serine-rich and serine-rich–related protein      
1376252_at AI145784 Splicing factor, arginine/serine-rich 3 (SRp20) (predicted) Sfrs3_predicted 1.03 + 0.08 0.76 + 0.27 0.39 + 0.02 0.50 + 0.12 
1379010_at AA956727 Splicing factor, arginine/serine-rich 3 (SRp20) (predicted) Sfrs3_predicted 2.11 + 0.43 1.18 + 0.28 3.98 + 0.87 2.05 + 0.67 
1376594_at AW524517 Similar to splicing factor, arginine/serine-rich 1 (ASF/SF2) Vezf1_predicted 1.73 + 0.60 1.45 + 0.23 3.16 + 0.36 3.44 + 0.51 
1383537_at BF522715 Similar to splicing factor, arginine/serine-rich 1 (ASF/SF2) Vezf1_predicted 1.84 + 0.46 1.79 + 0.30 1.67 + 0.29 1.80 + 0.11 
1371838_at AI411155 Similar to splicing factor, arginine/serine-rich 2 Sfrs2 1.11 + 0.07 1.13 + 0.12 1.43 + 0.04 1.33 + 0.04 
1371839_at AA819369 Similar to splicing factor, arginine/serine-rich 2 Sfrs2 0.63 + 0.13 0.66 + 0.07 1.59 + 0.10 1.33 + 0.17 
1368992_a_at AI104005 Splicing factor, arginine/serine-rich 5 Sfrs5 0.56 + 0.09 0.77 + 0.17 0.53 + 0.03 0.57 + 0.06 
1371999_at BI303641 Splicing factor arginine/serine-rich 6 (SRP55-2) (isoform 2) Sfrs6 0.37 + 0.13 0.71 + 0.06 0.19 + 0.04 0.20 + 0.09 
1381623_at BF391476 Ssimilar to Sfrs4 protein (predicted) Sfrs4_predicted 1.23 + 0.37 1.59 + 0.14 2.08 + 0.22 1.89 + 0.17 
1370188_at AW252670 Splicing factor, arginine/serine-rich 10 (transformer 2 homolog, Drosophila) Sfrs10 1.02 + 0.16 1.04 + 0.06 2.18 + 0.29 1.41 + 0.13 
1371425_at BF396399 Serine/arginine repetitive matrix 1 (predicted) Srrm1_predicted 1.29 + 0.21 1.20 + 0.13 1.40 + 0.09 1.37 + 0.06 
1383410_at BI290777 Signal recognition particle 54 Srp54 0.91 + 0.09 0.88 + 0.06 1.50 + 0.13 1.21 + 0.03 
1371596_at AI008971 Ribonucleic acid binding protein S1 Rnps1 1.01 + 0.34 0.90 + 0.12 1.84 + 0.08 1.54 + 0.06 
  Heterogeneous nuclear ribonucleoprotein family      
1398883_at BI296284 Heterogeneous nuclear ribonucleoprotein A2/B1 (predicted) Hnrpa2b1_predicted 0.77 + 0.10 0.85 + 0.05 0.45 + 0.04 0.53 + 0.06 
1371505_at BG381750 Heterogeneous nuclear ribonucleoprotein C Hnrpc 1.15 + 0.03 1.15 + 0.06 2.25 + 0.28 2.05 + 0.18 
1367931_a_at X60790 Polypyrimidine tract binding protein 1 Ptbp1 0.67 + 0.12 0.60 + 0.02 0.83 + 0.14 0.73 + 0.10 
1370919_at AI103467 Heterogeneous nuclear ribonucleoprotein M Hnrpm 0.85 + 0.09 0.81 + 0.03 0.79 + 0.07 0.78 + 0.07 
  Other splicing factors      
1389975_at BE116949 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 4 (Hu antigen D) HuD 0.63 + 0.12 0.59 + 0.11 0.32 + 0.02 0.33 + 0.06 
1394546_at AI556229 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 4 (Hu antigen D) HuD 0.82 + 0.37 0.59 + 0.03 0.10 + 0.01 0.21 + 0.09 
1395083_at AA926313 Neuro-oncological ventral antigen 1 Nova1 0.34 + 0.18 0.68 + 0.18 0.22 + 0.03 0.37 + 0.11 
1388476_at AI101391 Tial1 cytotoxic granule–associated RNA binding protein–like 1 (mapped) Tial1 1.15 + 0.21 1.03 + 0.21 1.39 + 0.02 1.32 + 0.05 
1374463_at AI172068 Quaking homolog, KH domain RNA binding (mouse) Qki 1.33 + 0.04 1.07 + 0.22 1.87 + 0.08 1.57 + 0.16 
1370899_at AI599699 Splicing factor proline/glutamine rich (polypyrimidine tract binding protein associated) Sfpq 0.42 + 0.05 0.48 + 0.02 0.40 + 0.08 0.30 + 0.13 
1386896_at AF393783 KH domain containing, RNA binding, signal transduction–associated 1 Khdrbs1 0.88 + 0.12 0.82 + 0.04 2.15 + 0.19 1.66 + 0.17 
1398773_at NM_130405 KH domain containing, RNA binding, signal transduction–associated 1 Khdrbs1 0.96 + 0.18 0.96 + 0.04 1.31 + 0.06 1.39 + 0.05 
1372496_at BG371538 Ribonucleoprotein PTB-binding 1 (protein raver-1) Raver1h 0.55 + 0.24 0.68 + 0.07 3.26 + 0.38 1.85 + 0.29 
1371367_at BE107459 TAR DNA-binding protein 43 (TDP-43) Tardbp 0.93 + 0.07 0.83 + 0.10 0.40 + 0.03 0.51 + 0.05 
ProbeGenBankGene name/functional groupSymbol6 h
24 h
IL + IFNTNF + IFNIL + IFNTNF + IFN
  Arginine metabolism and NO formation      
1368266_at NM_017134 arg1 Arg1 0.65 ± 0.06 0.76 ± 0.16 0.15 ± 0.03 0.28 ± 0.18 
1370964_at BF283456 ASS Ass 5.93 ± 1.30 0.75 ± 2.55 14.21 ± 4.66 1.73 ± 1.35 
1387667_at L12562 iNOS2 Nos2 375.0 ± 59.78 109.3 ± 214.5 113.8 ± 16.03 57.80 ± 21.89 
  Glucose metabolism      
1386916_at NM_017321 Aconitase 1 (Krebs) Aco1 0.23 ± 0.12 0.38 ± 0.04 0.41 ± 0.04 0.56 ± 0.11 
1367589_at NM_024398 Aconitase 2, mitochondrial (Krebs) Aco2 0.45 ± 0.08 0.53 ± 0.07 0.61 ± 0.03 0.57 ± 0.06 
1375295_at AI009657 Citrate synthase (Krebs) Cs 0.73 ± 0.18 0.60 ± 0.04 1.42 ± 0.15 1.31 ± 0.05 
1367670_at NM_017005 Fumarase/fumarate hydratase 1 (Krebs) Fh1 0.34 ± 0.03 0.58 ± 0.04 0.64 ± 0.03 0.77 ± 0.04 
1370865_at BI277627 Isocitrate dehydrogenase 3 (NAD), γ (Krebs) Idh3g 0.61 ± 0.03 0.61 ± 0.09 0.56 ± 0.05 0.66 ± 0.02 
1388160_a_at AI171793 Isocitrate dehydrogenase 3 (NAD+) β (Krebs) Idh3B 0.67 ± 0.23 0.74 ± 0.10 1.30 ± 0.18 1.39 ± 0.05 
1372790_at BG671530 Malate dehydrogenase 1, NAD (soluble) (Krebs) Mdh1 0.47 ± 0.06 0.53 ± 0.09 0.20 ± 0.02 0.29 ± 0.02 
1372790_at BG671530 Malate dehydrogenase 1, NAD (soluble) (Krebs) Mdh1 0.47 ± 0.06 0.53 ± 0.09 0.20 ± 0.02 0.29 ± 0.02 
1367653_a_at NM_033235 Malate dehydrogenase 1, NAD (soluble) (Krebs) Mdh1 0.67 ± 0.12 0.66 ± 0.03 0.52 ± 0.02 0.52 ± 0.05 
1367653_a_at NM_033235 Malate dehydrogenase 1, NAD (soluble) (Krebs) Mdh1 0.67 ± 0.12 0.66 ± 0.03 0.52 ± 0.02 0.52 ± 0.05 
1369927_at NM_031151 Malate dehydrogenase 2, NAD (mitochondrial) (Krebs) Mdh2 0.53 ± 0.16 0.48 ± 0.05 0.86 ± 0.03 0.79 ± 0.09 
1390020_at BI277513 α-Ketoglutarate dehydrogenase (Krebs) αkdgh 0.69 ± 0.14 0.75 ± 0.09 0.44 ± 0.01 0.55 ± 0.06 
1380813_at AA891239 Succinate dehydrogenase complex (Krebs) Sdhb_predicted 0.97 ± 0.23 1.00 ± 0.08 0.66 ± 0.10 0.89 ± 0.09 
1372123_at AI172320 Succinate dehydrogenase complex (Krebs) Sdhb_predicted 0.84 ± 0.25 0.59 ± 0.11 1.43 ± 0.05 1.32 ± 0.07 
1373017_at AI237518 Succinyl-CoA synthetase, β-subunit (Krebs) Suclg2 0.84 ± 0.24 0.84 ± 0.06 0.65 ± 0.08 0.89 ± 0.02 
1367617_at NM_012495 Aldolase A (glycolysis) Aldoa 0.77 ± 0.08 0.66 ± 0.01 1.35 ± 0.13 1.27 ± 0.04 
1387312_a_at NM_012565 Glucokinase (glycolysis) Gck 0.20 ± 0.07 0.32 ± 0.14 0.22 ± 0.05 0.24 ± 0.10 
1383519_at BI294137 Hexokinase 2 (glycolysis) Hk2 4.99 ± 2.62 17.22 ± 5.44 16.77 ± 8.13 20.43 ± 10.53 
1367575_at NM_012554 Enolase 1, alpha (glycolysis) Eno1 0.70 ± 0.07 0.62 ± 0.04 1.71 ± 0.08 1.62 ± 0.19 
1388318_at BI279760 Phosphoglycerate kinase 1 (glycolysis) Pgk1 0.81 ± 0.10 0.70 ± 0.10 2.08 ± 0.16 1.61 ± 0.20 
1386864_at NM_053290 Phosphoglycerate mutase 1 (glycolysis) Pgam1 0.71 ± 0.16 0.70 ± 0.07 1.53 ± 0.10 1.52 ± 0.06 
1378382_at AI230014 Phosphoglycerate mutase family member 5 (glycolysis) Pgam5 1.05 ± 0.05 0.91 ± 0.05 1.64 ± 0.04 1.61 ± 0.10 
1391577_at BI293450 Phosphoglycerate mutase family member 5 (glycolysis) Pgam5 1.12 ± 0.07 0.90 ± 0.05 1.56 ± 0.04 1.52 ± 0.24 
1367864_at NM_031715 Phosphofructokinase, muscle (glycolysis) Pfkm 0.46 ± 0.11 0.43 ± 0.08 0.21 ± 0.04 0.23 ± 0.12 
1372182_at BM389769 Phosphofructokinase, platelet (glycolysis) Pfkp 4.98 ± 0.72 4.95 ± 0.34 7.76 ± 0.71 6.09 ± 0.13 
1387263_at NM_012624 Pyruvate kinase, liver and red blood cell (glycolysis) Pklr 0.51 ± 0.16 0.32 ± 0.22 0.15 ± 0.01 0.27 ± 0.06 
1368651_at M17685 Pyruvate kinase, liver and red blood cell (glycolysis) Pklr 0.51 ± 0.06 0.52 ± 0.07 0.20 ± 0.02 0.22 ± 0.15 
1370200_at BI284411 Glutamate dehydrogenase 1 Glud1 0.32 ± 0.06 0.24 ± 0.08 0.26 ± 0.01 0.31 ± 0.09 
1387878_at AW916644 Glutamate dehydrogenase 1 Glud1 0.38 ± 0.06 0.26 ± 0.02 0.45 ± 0.04 0.43 ± 0.03 
1370870_at M30596 Malic enzyme 1 Me1 0.51 ± 0.18 0.57 ± 0.09 0.54 ± 0.02 0.67 ± 0.08 
1370067_at NM_012600 Malic enzyme 1 Me1 0.56 ± 0.13 0.63 ± 0.09 0.56 ± 0.03 0.84 ± 0.07 
1386917_at NM_012744 Pyruvate carboxylase Pc 0.38 ± 0.15 0.75 ± 0.10 0.47 ± 0.09 0.61 ± 0.10 
1371388_at BM389223 Pyruvate dehydrogenase (lipoamide) β Pdhb 0.58 ± 0.10 0.52 ± 0.08 0.74 ± 0.05 0.73 ± 0.07 
1372229_at AI179119 Pyruvate dehydrogenase kinase, isoenzyme 3 (mapped) Pdk3 0.21 ± 0.01 0.54 ± 0.12 0.09 ± 0.03 0.49 ± 0.04 
1370848_at BI284218 Solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 4.25 ± 0.37 2.22 ± 0.28 12.80 ± 5.29 9.07 ± 2.86 
1387228_at NM_012879 Solute carrier family 2 (facilitated glucose transporter), member 2 Slc2a2 0.37 ± 0.03 0.38 ± 0.04 0.27 ± 0.04 0.37 ± 0.08 
  Lipid metabolism      
1367763_at D13921 Acetyl-coenzyme A acetyltransferase 1 Acat1 0.47 ± 0.00 0.59 ± 0.06 0.30 ± 0.05 0.23 ± 0.12 
1383416_at AA899304 Acetyl-coenzyme A acetyltransferase 1 Acat1 0.32 ± 0.08 0.39 ± 0.12 0.36 ± 0.05 0.34 ± 0.05 
1370939_at D90109 Acyl-CoA synthetase long-chain family member 1 Acsl1 0.78 ± 0.22 1.45 ± 0.11 0.61 ± 0.09 1.22 ± 0.05 
1368177_at NM_057107 Acyl-CoA synthetase long-chain family member 3 Acsl3 0.78 ± 0.16 0.51 ± 0.10 1.92 ± 0.39 1.34 ± 0.33 
1386926_at NM_053607 Acyl-CoA synthetase long-chain family member 5 Acsl5 1.67 ± 0.11 1.41 ± 0.15 2.35 ± 0.13 2.17 ± 0.15 
1367854_at NM_016987 ATP citrate lyase Acly 0.61 ± 0.06 0.66 ± 0.02 0.61 ± 0.01 0.71 ± 0.06 
1398716_at BG670822 Carnitine palmitoyltransferase 1a, liver Cpt1a 0.96 ± 0.41 0.79 ± 0.23 0.47 ± 0.04 0.43 ± 0.12 
1382882_x_at AA963228 Carnitine palmitoyltransferase 1a, liver Cpt1a 0.78 ± 0.04 0.78 ± 0.06 0.51 ± 0.07 0.44 ± 0.15 
1392166_at BE099838 Carnitine palmitoyltransferase 1a, liver Cpt1a 0.77 ± 0.19 0.83 ± 0.13 0.52 ± 0.03 0.48 ± 0.15 
1397700_x_at BG670822 Carnitine palmitoyltransferase 1a, liver Cpt1a 0.83 ± 0.47 0.91 ± 0.18 0.55 ± 0.05 0.40 ± 0.13 
1386927_at NM_012930 Carnitine palmitoyltransferase 2 Cpt2 0.29 ± 0.08 0.31 ± 0.03 0.17 ± 0.04 0.21 ± 0.09 
1367740_at M14400 Ceatine kinase, brain Ckb 0.19 ± 0.07 0.15 ± 0.06 0.12 ± 0.03 0.09 ± 0.09 
1390566_a_at BI301453 Creatine kinase, mitochondrial 1, ubiquitous Ckmt1 6.60 ± 0.94 5.46 ± 1.91 6.07 ± 1.56 3.82 ± 0.76 
1391534_at BG666735 Elongation of very-long-chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 2 (predicted) Elovl2_predicted 0.38 ± 0.28 0.36 ± 0.27 0.34 ± 0.04 0.39 ± 0.09 
1388108_at BE116152 ELOVL family member 6, elongation of long-chain fatty acids (yeast) Elovl6 0.43 ± 0.11 0.38 ± 0.08 0.36 ± 0.02 0.35 ± 0.06 
1367857_at NM_053445 Fatty acid desaturase 1 Fads1 0.21 ± 0.07 0.25 ± 0.07 0.28 ± 0.03 0.27 ± 0.14 
1367707_at NM_017332 Fatty acid synthase Fasn 0.33 ± 0.09 0.12 ± 0.08 0.50 ± 0.02 0.50 ± 0.14 
1371979_at AI170663 Sterol regulatory element– binding factor 2 (predicted) Srebf2_predicted 0.87 ± 0.16 0.87 ± 0.04 0.45 ± 0.06 0.43 ± 0.08 
1389611_at AA849857 VLDL receptor Vldlr 0.75 ± 0.13 0.34 ± 0.12 2.39 ± 0.20 2.28 ± 0.07 
1387455_a_at NM_013155 VLDL lipoprotein receptor Vldlr 0.63 ± 0.15 0.50 ± 0.09 2.79 ± 0.25 2.35 ± 0.09 
  Chemokines/cytokines/adhesion molecules      
1367973_at NM_031530 Chemokine (C-C motif) ligand 2 Ccl2 962.7 ± 378.5 987.1 ± 713.1 511.9 ± 362.3 124.1 ± 163.7 
1369814_at AF053312 Chemokine (C-C motif) ligand 20/ Ccl20 168.9 ± 15.58 62.2 ± 119.2 139.7 ± 15.95 14.86 ± 5.29 
1369983_at NM_031116 Chemokine (C-C motif) ligand 5 Ccl5 0.60 ± 1.55 77.43 ± 32.63 4.42 ± 2.94 182.1 ± 121.9 
1379935_at BF419899 Chemokine (C-C motif) ligand 7 Ccl7 131.3 ± 45.08 128.0 ± 74.85 59.30 ± 6.36 7.41 ± 2.48 
1387316_at NM_030845 Chemokine (C-X-C motif) ligand 1 (GRO-alpha) Cxcl1 392.4 ± 101.8 36.4 ± 155.4 189.8 ± 84.53 6.64 ± 3.37 
1372064_at BI296385 Similar to chemokine (C-X-C motif) ligand 16 Cxcl16 15.71 ± 2.78 19.87 ± 3.52 17.06 ± 1.37 24.66 ± 2.03 
1368760_at NM_031530 Chemokine (C-X-C motif) ligand 2/ Cxcl2 282.1 ± 61.17 15.91 ± 203.9 47.3 ± 21.72 1.54 ± 0.40 
1373544_at AI170387 Chemokine (C-X-C motif) ligand 9 Cxcl9 238.2 ± 232.7 588.0 ± 339.3 199.8 ± 88.6 288.0 ± 161.2 
1382454_at AI044222 Chemokine (C-X-C motif) ligand 9 Cxcl9 290.5 ± 172.6 913.8 ± 269.6 197.2 ± 216.5 334.7 ± 398.9 
1387202_at NM_012967 Intercellular adhesion molecule 1 Icam1 192.9 ± 29.93 541.5 ± 110.6 93.2 ± 29.84 152.8 ± 32.92 
1368375_a_at AF015718 IL-15 Il15 10.36 ± 0.45 32.08 ± 1.36 6.84 ± 1.37 20.42 ± 7.31 
1368474_at NM_012889 Vascular cell adhesion molecule 1 Vcam1 3.13 ± 0.95 34.83 ± 5.74 2.50 ± 0.86 28.37 ± 12.45 
  IFN-γ signaling      
1369956_at NM_053783 IFN-γ receptor 1 Ifngr 1.47 ± 0.34 1.46 ± 0.28 1.81 ± 0.26 1.74 ± 0.15 
1368073_at NM_012591 IRF-1 Irf1 66.39 ± 15.09 105.83 ± 19.34 19.85 ± 3.56 34.76 ± 2.17 
1371560_at AA893384 IRF-3 Irf3 0.81 ± 0.09 0.87 ± 0.23 0.70 ± 0.05 0.58 ± 0.06 
1383564_at BF411036 IRF- 7 Irf7 90.31 ± 27.87 427.28 ± 111.88 22.64 ± 11.73 104.71 ± 53.34 
1372097_at BF284262 IRF-8 Irf8 81.26 ± 2.01 57.63 ± 16.59 12.28 ± 2.73 3.57 ± 2.74 
1375796_at BI300770 IFN-γ–induced GTPase Igtp 32.18 ± 11.58 45.65 ± 10.40 7.96 ± 4.76 11.24 ± 9.04 
1373992_at AI408440 Similar to IFN-inducible GTPase MGC108823 140.5 ± 42.77 482.2 ± 131.4 144.4 ± 18.54 370.8 ± 95.71 
1377950_at AA955213 Similar to IFN-inducible GTPase RGD1309362 63.4 ± 13.8 235.0 ± 73.5 29.1 ± 11.5 142.2 ± 43.5 
1368835_at AW434718 STAT1 Stat1 14.50 ± 1.75 19.51 ± 1.89 5.50 ± 0.69 8.67 ± 1.42 
1372757_at BM386875 STAT1 Stat1 7.38 ± 0.85 8.27 ± 0.61 4.74 ± 0.49 7.28 ± 1.02 
1387354_at NM_032612 STAT1 Stat1 28.13 ± 9.16 23.80 ± 8.68 9.90 ± 1.91 13.39 ± 4.09 
1389571_at BG666368 STAT2 Stat2 17.98 ± 5.43 25.50 ± 2.68 32.83 ± 16.23 49.37 ± 12.41 
1370224_at BE113920 STAT3 Stat3 2.66 ± 0.43 2.86 ± 0.25 2.92 ± 0.66 1.91 ± 0.73 
1371781_at BI285863 STAT3 Stat3 2.02 ± 0.15 2.96 ± 0.34 1.62 ± 0.22 1.66 ± 0.28 
1387876_at AI177626 STAT5B Stat5b 1.33 ± 0.39 1.23 ± 0.11 3.24 ± 1.02 1.41 ± 0.31 
1383478_at BG671504 Janus kinase 1 Jak1 1.06 ± 0.16 0.98 ± 0.09 2.71 ± 0.11 2.74 ± 0.45 
1384060_at BG663208 Janus kinase 1 Jak1 1.31 ± 0.04 0.97 ± 0.23 3.71 ± 0.38 3.38 ± 0.45 
1368856_at NM_031514 Janus kinase 2 Jak2 9.74 ± 5.58 17.88 ± 3.18 4.23 ± 1.48 5.79 ± 1.98 
1380110_at AI229643 Janus kinase 2 Jak2 12.28 ± 1.16 14.90 ± 2.81 7.27 ± 0.75 9.56 ± 1.54 
1368251_at NM_012855 Janus kinase 3 Jak3 1.46 ± 0.12 3.24 ± 0.85 0.99 ± 0.24 1.53 ± 0.20 
1376666_at AI170864 Suppressor of cytokine signaling 6 (predicted) Socs6_predicted 0.90 ± 0.17 1.28 ± 0.25 1.51 ± 0.08 1.37 ± 0.09 
1391484_at BF284786 Suppressor of cytokine signaling 7 (predicted) Socs7_predicted 1.32 ± 0.06 1.53 ± 0.13 1.25 ± 0.03 1.41 ± 0.18 
  NF-κB regulation      
1383474_at BI274988 IL-1 receptor–associated kinase 2 Irak2 3.55 ± 0.66 3.57 ± 1.51 3.01 ± 0.20 1.34 ± 0.23 
1370968_at AA858801 NFκ light-chain gene enhancer in B-cells 1, p105 Nfkb1 19.06 ± 3.30 17.76 ± 0.97 7.67 ± 1.59 7.48 ± 1.72 
1389538_at AW672589 NFκ light-chain gene enhancer in B-cells inhibitor, α Nfkbia 55.16 ± 26.23 82.84 ± 18.93 25.93 ± 8.42 20.09 ± 5.05 
1367943_at NM_030867 NFκ light-chain gene enhancer in B-cells inhibitor, β Nfkbib 4.40 ± 1.97 5.78 ± 0.95 7.26 ± 2.31 5.67 ± 1.34 
1375989_a_at AI170362 NFκ light polypeptide gene enhancer in B-cells 2, p49/p100 Nfkb2 12.32 ± 2.84 18.22 ± 5.02 10.63 ± 6.55 11.33 ± 5.34 
1376835_at BI293600 NFκ light polypeptide gene enhancer in B-cells inhibitor, έ Nfkbie 11.21 ± 3.38 41.27 ± 4.76 2.04 ± 1.40 7.89 ± 1.86 
1378032_at AI176265 NFκ light polypeptide gene enhancer in B-cells inhibitor, ζ (predicted) Nfkbiz_predicted 12.91 ± 2.15 9.86 ± 1.36 13.48 ± 2.26 10.71 ± 1.32 
  Others transcription factors      
1379368_at AI237606 B-cell leukemia/lymphoma 6 (predicted) Bcl6_predicted 1.90 ± 0.90 2.23 ± 0.86 9.63 ± 1.51 10.86 ± 2.22 
1385592_at BI289386 Bcl6 interacting corepressor (predicted) Bcor_predicted 1.34 ± 0.04 1.53 ± 0.11 2.48 ± 0.52 1.76 ± 0.07 
1391632_at AA964568 CCAAT/enhancer binding protein (C/EBP), δ Cebpd 0.74 ± 0.05 0.60 ± 0.03 2.21 ± 0.63 1.74 ± 0.09 
1387343_at NM_013154 CCAAT/enhancer binding protein (C/EBP), δ Cebpd 2.34 ± 0.36 1.11 ± 0.10 10.82 ± 3.47 5.42 ± 0.99 
1375043_at BF415939 FBJ murine osteosarcoma viral oncogene homolog Fos 0.33 ± 0.08 0.70 ± 0.18 0.33 ± 0.07 0.29 ± 0.28 
1388761_at AI180339 Histone deacetylase 1 (predicted) Hdac1_predicted 0.59 ± 0.04 0.72 ± 0.09 0.34 ± 0.05 0.56 ± 0.02 
1396820_at AW530195 Histone deacetylase 1 (predicted) Hdac1_predicted 0.97 ± 0.16 0.99 ± 0.24 0.54 ± 0.02 0.56 ± 0.03 
1370908_at AA892297 Histone deacetylase 2 Hdac2 0.61 ± 0.04 0.97 ± 0.16 0.73 ± 0.05 0.82 ± 0.02 
1387076_at NM_024359 HIF-1, α-subunit Hif1a 2.02 ± 0.17 1.58 ± 0.31 2.07 ± 0.20 2.16 ± 0.19 
1369681_at NM_017339 ISL1 transcription factor, LIM/homeodomain 1 Isl1 0.53 ± 0.08 0.14 ± 0.05 0.31 ± 0.23 0.29 ± 0.06 
1393138_at BE329377 Jun D proto-oncogene Jund 1.31 ± 0.10 1.43 ± 0.05 2.25 ± 0.23 1.83 ± 0.23 
1369516_at NM_022852 Pancreatic and duodenal homeobox gene 1 Pdx1 1.01 ± 0.23 0.21 ± 0.03 0.49 ± 0.06 0.25 ± 0.21 
1369242_at NM_013001 Paired box gene 6 Pax6 0.50 ± 0.01 0.52 ± 0.08 0.35 ± 0.04 0.53 ± 0.05 
1374404_at BI288619 Proto-oncogene c-jun Jun 2.17 ± 1.36 2.44 ± 1.09 4.95 ± 0.94 2.76 ± 0.36 
1369788_s_at NM_021835 Proto-oncogene c-jun Jun 4.71 ± 1.35 6.30 ± 1.77 7.39 ± 0.13 6.65 ± 1.20 
1389528_s_at BI288619 Proto-oncogene c-jun Jun 4.00 ± 0.93 3.05 ± 0.68 9.12 ± 1.52 7.04 ± 2.01 
  Hormones      
1387235_at NM_021655 Chromogranin A Chga 0.64 ± 0.16 0.65 ± 0.01 0.30 ± 0.02 0.27 ± 0.05 
1368034_at NM_012526 Chromogranin B Chgb 0.79 ± 0.13 0.66 ± 0.02 0.30 ± 0.02 0.35 ± 0.04 
1369888_at NM_012707 Glucagon Gcg 0.71 ± 0.04 0.77 ± 0.06 0.10 ± 0.01 0.16 ± 0.06 
1387815_at NM_019129 Insulin 1 Ins1 0.94 ± 0.09 1.04 ± 0.12 0.75 ± 0.06 0.79 ± 0.02 
1370077_at NM_019130 Insulin 2 Ins2 0.86 ± 0.07 0.99 ± 0.09 0.68 ± 0.03 0.75 ± 0.01 
1387660_at M25390 Islet amyloid polypeptide Iapp 0.86 ± 0.10 0.85 ± 0.02 0.48 ± 0.03 0.60 ± 0.06 
1368559_at NM_017091 Proprotein convertase subtilisin/kexin type 1 Pcsk1 0.48 ± 0.18 0.48 ± 0.07 0.18 ± 0.03 0.27 ± 0.05 
1387247_at M83745 Proprotein convertase subtilisin/kexin type 1 Pcsk1 0.41 ± 0.14 0.56 ± 0.06 0.17 ± 0.02 0.23 ± 0.14 
1387155_at NM_012746 Proprotein convertase subtilisin/kexin type 2 Pcsk2 0.78 ± 0.08 0.76 ± 0.08 0.45 ± 0.02 0.58 ± 0.04 
1397662_at BF395791 Proprotein convertase subtilisin/kexin type 2 Pcsk2 0.92 ± 0.17 1.05 ± 0.08 0.26 ± 0.04 0.55 ± 0.14 
1367778_at NM_019331 Proprotein convertase subtilisin/kexin type 3 Pcsk3 0.80 ± 0.06 0.51 ± 0.01 0.67 ± 0.05 0.57 ± 0.03 
1367762_at NM_012659 Somatostatin Sst 0.48 ± 0.06 0.48 ± 0.04 0.08 ± 0.01 0.08 ± 0.08 
  Hormone receptors      
1369787_at NM_012688 Cholecystokinin A receptor Cckar 0.23 ± 0.04 0.25 ± 0.04 0.06 ± 0.01 0.11 ± 0.12 
1368481_at NM_012714 Gastric inhibitory polypeptide receptor Gipr 0.55 ± 0.05 0.64 ± 0.16 0.14 ± 0.02 0.12 ± 0.08 
1369699_at NM_012728 GLP-1 receptor Glp1r 0.47 ± 0.34 0.96 ± 0.26 0.32 ± 0.04 0.39 ± 0.08 
1368924_at NM_017094 Growth hormone receptor Ghr 0.41 ± 0.07 0.49 ± 0.17 0.31 ± 0.06 0.44 ± 0.07 
1370384_a_at M57668 Prolactin receptor Prlr 0.36 ± 0.12 0.38 ± 0.18 0.17 ± 0.06 0.23 ± 0.20 
1370789_a_at L48060 Prolactin receptor Prlr 0.15 ± 0.08 0.38 ± 0.14 0.21 ± 0.01 0.21 ± 0.05 
1376944_at AI407163 Prolactin receptor Prlr 0.41 ± 0.03 0.49 ± 0.03 0.17 ± 0.04 0.35 ± 0.11 
1392612_at AW142962 Prolactin receptor Prlr 0.37 ± 0.11 0.50 ± 0.12 0.13 ± 0.03 0.14 ± 0.10 
1387177_at NM_017238 Vasoactive intestinal peptide receptor 2 Vipr2 0.35 ± 0.07 0.36 ± 0.06 0.13 ± 0.02 0.11 ± 0.03 
  Free radical scavanger/DNA damage      
1367995_at NM_012520 Catalase Cat 0.79 ± 0.09 0.72 ± 0.09 1.96 ± 0.14 2.12 ± 0.29 
1367774_at NM_031509 Glutathione S-transferase A3 Gsta3 0.58 ± 0.19 0.45 ± 0.16 6.34 ± 1.77 1.78 ± 0.13 
1389832_at BE113459 Glutathione S-transferase, ω 1 Gsto1 0.62 ± 0.12 0.66 ± 0.04 1.54 ± 0.15 1.59 ± 0.05 
1387023_at NM_031154 Glutathione S-transferase, μ type 3 Gstm3 0.38 ± 0.06 0.38 ± 0.04 0.14 ± 0.01 0.12 ± 0.05 
1388122_at X02904 Glutathione S-transferase, π 2 Gstp2 0.83 ± 0.32 0.52 ± 0.14 4.61 ± 1.84 6.30 ± 2.10 
1372016_at BI287978 Growth arrest and DNA damage–inducible 45 β Gadd45b 44.52 ± 6.02 21.01 ± 34.64 131.03 ± 53.38 38.81 ± 10.31 
1388792_at AI599423 Growth arrest and DNA damage–inducible 45 γ Gadd45g 3.85 ± 1.06 2.43 ± 0.88 3.53 ± 0.48 1.89 ± 0.54 
1388267_a_at M24327 Metallothionein 1a Mt1a 2.41 ± 1.74 3.61 ± 1.23 26.36 ± 4.49 30.52 ± 4.33 
1371237_a_at AF411318 Metallothionein 1a Mt1a 3.02 ± 1.19 4.03 ± 1.07 36.70 ± 11.37 40.64 ± 9.73 
1374911_at AW251534 Oxidative stress responsive gene RGD1303142 1.01 ± 1.07 1.00 ± 0.34 8.43 ± 2.51 6.51 ± 0.66 
1372941_at BI273897 p53 and DNA damage regulated 1 Pdrg1 2.01 ± 0.50 1.30 ± 0.03 2.61 ± 0.18 2.07 ± 0.07 
1380071_at BI285978 Poly (ADP-ribose) polymerase family, member 12 (predicted) Parp12_predicted 7.04 ± 1.25 8.87 ± 0.94 2.89 ± 0.13 4.96 ± 0.65 
1383251_at AW524533 Poly (ADP-ribose) polymerase family, member 2 (predicted) Parp2_predicted 0.99 ± 0.18 0.77 ± 0.20 1.22 ± 0.09 1.40 ± 0.13 
1376144_at AA819679 Poly (ADP-ribose) polymerase family, member 9 (predicted) Parp9_predicted 27.68 ± 9.82 48.25 ± 13.19 15.17 ± 1.94 22.40 ± 2.13 
1370173_at BG671549 Superoxide dismutase 2, mitochondrial Sod2 6.74 ± 0.41 7.02 ± 0.19 7.51 ± 1.27 5.53 ± 0.35 
1370172_at AA892254 Superoxide dismutase 2, mitochondrial Sod2 8.69 ± 0.50 9.23 ± 0.82 13.07 ± 0.94 9.18 ± 0.63 
  Endoplasmic reticulum stress/apoptosis related      
1369268_at NM_012912 ATF3 Atf3 15.73 ± 3.69 23.27 ± 4.00 53.89 ± 24.87 26.59 ± 27.09 
1367624_at NM_024403 ATF4 Atf4 1.33 ± 0.08 1.07 ± 0.05 2.32 ± 0.27 2.16 ± 0.12 
1368066_at NM_053812 BCL2-antagonist/killer 1 Bak1 6.45 ± 3.37 5.77 ± 0.93 3.83 ± 0.76 6.81 ± 2.79 
1369122_at AF235993 Bcl2-associated X protein Bax 1.17 ± 0.06 1.24 ± 0.06 2.34 ± 0.22 2.32 ± 0.22 
1377759_at BG666928 BH3-interacting domain death agonist Bid 6.29 ± 1.66 3.48 ± 1.36 9.39 ± 1.30 4.30 ± 0.71 
1370283_at M14050 Bip Hspa5 0.89 ± 0.10 0.91 ± 0.05 1.46 ± 0.03 1.35 ± 0.06 
1370283_at M14050 Bip Hspa5 0.89 ± 0.10 0.91 ± 0.05 1.46 ± 0.03 1.35 ± 0.06 
1381173_at BG375010 Caspase 4, apoptosis-related cysteine peptidase Casp4 17.97 ± 7.54 15.89 ± 5.15 5.70 ± 0.89 17.31 ± 4.98 
1387818_at NM_053736 Caspase 4, apoptosis-related cysteine peptidase Casp4 18.89 ± 7.24 26.13 ± 13.11 41.24 ± 27.83 65.61 ± 19.29 
1389170_at BF283754 Caspase 7 Casp7 0.40 ± 0.12 0.31 ± 0.18 0.57 ± 0.09 0.72 ± 0.08 
1367529_at BE113989 Derlin1 RGD1311835 0.81 ± 0.06 0.78 ± 0.08 1.52 ± 0.20 1.44 ± 0.08 
1374581_at BM384392 Derlin1 RGD1311835 0.91 ± 0.08 0.80 ± 0.09 1.73 ± 0.18 1.43 ± 0.13 
1389615_at BI284801 Derlin1 RGD1311835 0.58 ± 0.19 0.55 ± 0.02 2.34 ± 0.25 2.07 ± 0.17 
1369590_a_at NM_024134 Chop Ddit3 1.66 ± 0.27 1.19 ± 0.33 7.86 ± 1.11 7.10 ± 0.91 
1383011_at AI501182 Eukaryotic translation initiation factor 2A Eif2a 1.62 ± 0.09 1.62 ± 0.25 1.86 ± 0.20 1.70 ± 0.05 
1388898_at AI236601 Heat shock 105 kDa/110 kDa protein 1 Hsph1 0.71 ± 0.08 0.74 ± 0.15 2.01 ± 0.66 1.50 ± 0.20 
1385620_at BF525282 Heat shock 105 kDa/110 kDa protein 1 Hsph1 0.54 ± 0.07 0.31 ± 0.15 3.56 ± 0.85 1.35 ± 0.20 
1388721_at BG380282 Heat shock 22 kDa protein 8 Hspb8 35.81 ± 13.54 12.67 ± 5.18 9.02 ± 2.86 5.92 ± 2.36 
1368247_at NM_031971 Heat shock 70 kD protein 1A Hspa1a 1.21 ± 0.16 1.25 ± 0.23 5.57 ± 1.02 1.52 ± 1.14 
1370912_at BI278231 Heat shock 70 kD protein 1B (mapped) Hspa1b 1.19 ± 0.26 1.17 ± 0.35 6.15 ± 1.09 2.03 ± 1.48 
1388851_at BI282281 Heat shock 70 kDa protein 9A (predicted) Hspa9a_predicted 0.80 ± 0.07 0.69 ± 0.03 1.97 ± 0.10 1.91 ± 0.12 
1386894_at NM_022229 Heat shock protein 1 (chaperonin) Hspd1 0.52 ± 0.01 0.49 ± 0.01 1.37 ± 0.11 1.24 ± 0.05 
1372701_at AI237597 Heat shock protein 1, α Hspca 0.76 ± 0.12 0.76 ± 0.18 2.79 ± 0.20 1.63 ± 0.26 
1388850_at BG671521 Heat shock protein 1, α Hspca 0.67 ± 0.06 0.79 ± 0.09 3.06 ± 0.68 1.66 ± 0.27 
1398240_at NM_024351 Heat shock protein 8 Hspa8 0.66 ± 0.06 0.68 ± 0.08 1.51 ± 0.10 1.21 ± 0.05 
1368195_at NM_134419 Hspb-associated protein 1 Hspbap1 0.81 ± 0.77 1.00 ± 0.25 3.89 ± 0.30 2.22 ± 0.34 
1370174_at BI284349 Myeloid differentiation primary response gene 116 Myd116 6.11 ± 0.81 6.55 ± 4.61 21.46 ± 2.39 9.67 ± 6.56 
1382615_at BI284366 Sec61 α1 subunit (S. cerevisiae) Sec61a1 0.76 ± 0.18 0.97 ± 0.09 0.75 ± 0.29 0.54 ± 0.04 
1375659_at BG381529 Sec61, α-subunit 2 (S. cerevisiae) (predicted) Sec61a2_predicted 0.77 ± 0.06 0.84 ± 0.03 0.71 ± 0.04 0.81 ± 0.01 
1372533_at AI175790 Similar to mKIAA0212 protein (predicted) edem 1.35 ± 0.12 2.06 ± 0.14 1.44 ± 0.05 1.51 ± 0.16 
1370695_s_at AB020967 Tribbles homolog 3 (Drosophila) Trib3 1.88 ± 0.76 0.88 ± 0.13 8.15 ± 3.61 7.74 ± 0.85 
1370694_at AB020967 Tribbles homolog 3 (Drosophila) Trib3 1.94 ± 1.04 1.16 ± 0.23 9.76 ± 1.28 7.81 ± 0.47 
1386321_s_at H31287 Tribbles homolog 3 (Drosophila) Trib3 2.12 ± 0.61 1.30 ± 0.16 14.66 ± 2.32 10.47 ± 1.31 
1369065_a_at NM_017290 Serca2 Atp2a2 0.40 ± 0.08 0.45 ± 0.07 0.21 ± 0.02 0.25 ± 0.07 
1370426_a_at AI175492 Serca2 Atp2a2 0.51 ± 0.06 0.52 ± 0.03 0.63 ± 0.06 0.65 ± 0.03 
  Cell cycle      
1390343_at AA998893 Cyclin C Ccnc 0.61 ± 0.15 0.59 ± 0.03 0.48 ± 0.01 0.68 ± 0.04 
1389101_at BE120340 Cyclin C Ccnc 0.90 ± 0.14 0.81 ± 0.21 1.33 ± 0.21 1.62 ± 0.04 
1371643_at AW143798 Cyclin D1 Ccnd1 0.48 ± 0.12 0.69 ± 0.14 0.43 ± 0.12 0.55 ± 0.17 
1369935_at NM_012766 Cyclin D3 Ccnd3 0.38 ± 0.11 0.52 ± 0.02 0.62 ± 0.12 0.62 ± 0.10 
1371953_at AI408309 Cyclin G2 (predicted) Ccng2_predicted 4.59 ± 0.72 4.51 ± 1.85 2.45 ± 0.33 2.54 ± 0.37 
1388370_at AA945706 Cyclin I (predicted) Ccni_predicted 0.93 ± 0.06 1.05 ± 0.06 0.74 ± 0.02 0.88 ± 0.04 
1368050_at NM_053662 Cyclin L1 Ccnl1 1.61 ± 0.35 1.96 ± 0.55 2.76 ± 0.47 1.80 ± 0.76 
1390815_at BF282870 Cyclin M1 (predicted) Cnnm1_predicted 1.08 ± 0.11 0.76 ± 0.17 0.49 ± 0.04 0.38 ± 0.05 
1391270_at BE112177 Cyclin M3 (predicted) Cnnm3_predicted 0.37 ± 0.05 0.33 ± 0.05 0.19 ± 0.04 0.37 ± 0.07 
1384214_a_at AI045459 Cyclin T2 (predicted) Ccnt2_predicted 0.50 ± 0.23 0.75 ± 0.30 0.27 ± 0.06 0.42 ± 0.09 
1390470_at BE107044 Cyclin T2 (predicted) Ccnt2_predicted 1.73 ± 0.29 1.21 ± 0.12 0.53 ± 0.09 0.71 ± 0.16 
  Splicing machinery      
  Serine-rich and serine-rich–related protein      
1376252_at AI145784 Splicing factor, arginine/serine-rich 3 (SRp20) (predicted) Sfrs3_predicted 1.03 + 0.08 0.76 + 0.27 0.39 + 0.02 0.50 + 0.12 
1379010_at AA956727 Splicing factor, arginine/serine-rich 3 (SRp20) (predicted) Sfrs3_predicted 2.11 + 0.43 1.18 + 0.28 3.98 + 0.87 2.05 + 0.67 
1376594_at AW524517 Similar to splicing factor, arginine/serine-rich 1 (ASF/SF2) Vezf1_predicted 1.73 + 0.60 1.45 + 0.23 3.16 + 0.36 3.44 + 0.51 
1383537_at BF522715 Similar to splicing factor, arginine/serine-rich 1 (ASF/SF2) Vezf1_predicted 1.84 + 0.46 1.79 + 0.30 1.67 + 0.29 1.80 + 0.11 
1371838_at AI411155 Similar to splicing factor, arginine/serine-rich 2 Sfrs2 1.11 + 0.07 1.13 + 0.12 1.43 + 0.04 1.33 + 0.04 
1371839_at AA819369 Similar to splicing factor, arginine/serine-rich 2 Sfrs2 0.63 + 0.13 0.66 + 0.07 1.59 + 0.10 1.33 + 0.17 
1368992_a_at AI104005 Splicing factor, arginine/serine-rich 5 Sfrs5 0.56 + 0.09 0.77 + 0.17 0.53 + 0.03 0.57 + 0.06 
1371999_at BI303641 Splicing factor arginine/serine-rich 6 (SRP55-2) (isoform 2) Sfrs6 0.37 + 0.13 0.71 + 0.06 0.19 + 0.04 0.20 + 0.09 
1381623_at BF391476 Ssimilar to Sfrs4 protein (predicted) Sfrs4_predicted 1.23 + 0.37 1.59 + 0.14 2.08 + 0.22 1.89 + 0.17 
1370188_at AW252670 Splicing factor, arginine/serine-rich 10 (transformer 2 homolog, Drosophila) Sfrs10 1.02 + 0.16 1.04 + 0.06 2.18 + 0.29 1.41 + 0.13 
1371425_at BF396399 Serine/arginine repetitive matrix 1 (predicted) Srrm1_predicted 1.29 + 0.21 1.20 + 0.13 1.40 + 0.09 1.37 + 0.06 
1383410_at BI290777 Signal recognition particle 54 Srp54 0.91 + 0.09 0.88 + 0.06 1.50 + 0.13 1.21 + 0.03 
1371596_at AI008971 Ribonucleic acid binding protein S1 Rnps1 1.01 + 0.34 0.90 + 0.12 1.84 + 0.08 1.54 + 0.06 
  Heterogeneous nuclear ribonucleoprotein family      
1398883_at BI296284 Heterogeneous nuclear ribonucleoprotein A2/B1 (predicted) Hnrpa2b1_predicted 0.77 + 0.10 0.85 + 0.05 0.45 + 0.04 0.53 + 0.06 
1371505_at BG381750 Heterogeneous nuclear ribonucleoprotein C Hnrpc 1.15 + 0.03 1.15 + 0.06 2.25 + 0.28 2.05 + 0.18 
1367931_a_at X60790 Polypyrimidine tract binding protein 1 Ptbp1 0.67 + 0.12 0.60 + 0.02 0.83 + 0.14 0.73 + 0.10 
1370919_at AI103467 Heterogeneous nuclear ribonucleoprotein M Hnrpm 0.85 + 0.09 0.81 + 0.03 0.79 + 0.07 0.78 + 0.07 
  Other splicing factors      
1389975_at BE116949 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 4 (Hu antigen D) HuD 0.63 + 0.12 0.59 + 0.11 0.32 + 0.02 0.33 + 0.06 
1394546_at AI556229 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 4 (Hu antigen D) HuD 0.82 + 0.37 0.59 + 0.03 0.10 + 0.01 0.21 + 0.09 
1395083_at AA926313 Neuro-oncological ventral antigen 1 Nova1 0.34 + 0.18 0.68 + 0.18 0.22 + 0.03 0.37 + 0.11 
1388476_at AI101391 Tial1 cytotoxic granule–associated RNA binding protein–like 1 (mapped) Tial1 1.15 + 0.21 1.03 + 0.21 1.39 + 0.02 1.32 + 0.05 
1374463_at AI172068 Quaking homolog, KH domain RNA binding (mouse) Qki 1.33 + 0.04 1.07 + 0.22 1.87 + 0.08 1.57 + 0.16 
1370899_at AI599699 Splicing factor proline/glutamine rich (polypyrimidine tract binding protein associated) Sfpq 0.42 + 0.05 0.48 + 0.02 0.40 + 0.08 0.30 + 0.13 
1386896_at AF393783 KH domain containing, RNA binding, signal transduction–associated 1 Khdrbs1 0.88 + 0.12 0.82 + 0.04 2.15 + 0.19 1.66 + 0.17 
1398773_at NM_130405 KH domain containing, RNA binding, signal transduction–associated 1 Khdrbs1 0.96 + 0.18 0.96 + 0.04 1.31 + 0.06 1.39 + 0.05 
1372496_at BG371538 Ribonucleoprotein PTB-binding 1 (protein raver-1) Raver1h 0.55 + 0.24 0.68 + 0.07 3.26 + 0.38 1.85 + 0.29 
1371367_at BE107459 TAR DNA-binding protein 43 (TDP-43) Tardbp 0.93 + 0.07 0.83 + 0.10 0.40 + 0.03 0.51 + 0.05 

Data are means ± SE of three independent experiments and are expressed as fold change versus control cells, studied at the same time points. Gene expression was considered modified by cytokines when P ≤ 0.02 (paired t test) and expression level ≥ 1.5-fold higher or lower as compared with control conditions. Primary rat β-cells were left untreated or exposed to IL1β + IFN-γ (IL + IFN) or TNF-α + IFN-γ (TNF + IFN) for 6 and 24 h.

Analysis of gene networks and pathways regulated by IL-1β + IFN-γ or TNF-α + IFN-γ in rat β-cells.

IPA analysis identified 50 and 100 IL-1β + IFN-γ–modified and 50 and 86 TNF-α + IFN-γ–modified networks containing >12 focus genes and representing key transcription factors and their interactions with target genes after 6 and 24 h, respectively (data not shown). The networks regulated by the transcription factors NF-κB (supplementary Fig. 2A) and Myc (supplementary Fig. 2B) were among the top scores for both cytokines. Depending on the cytokines tested, however, these networks often contained different groups of genes regulated by the same transcription factor. Different temporal patterns of transcription factor activation may lead to a differential induction of downstream genes (11). IL-1β induced an earlier and more sustained NF-κB activation, represented by nuclear p65, as compared with TNF-α (supplementary Fig. 2C).

The canonical pathways regulated by IL-1β + IFN-γ or TNF-α + IFN-γ after 24 h were identified by IPA, and the top 32 pathways are shown in supplementary Fig. 3. Among these, many were related to local inflammatory responses, such as IFN signaling, antigen presentation, antiviral responses, and production of cytokines or chemokines. Several of the pathways were involved in the intracellular signaling induced by cytokines (such as those mediated by Janus kinase/signal transducers and activators of transcription, HIF-1α and NF-κB), apoptosis, cell cycle regulation, cell metabolism (e.g., Krebs [citrate] cycle), or in endoplasmic reticulum stress. Based on the identification of these pathways, we focused on novel pathways of particular relevance for insulitis/β-cell apoptosis, aiming to identify regulatory transcription factors by use of siRNA strategy (see below).

Differential inflammatory signature of IL-1β and TNF-α.

Cytokines regulate expression of many genes involved in the inflammatory response, such as “chemokines/cytokines/adhesion molecules” and “IFN-γ signaling” (Table 1 and supplementary Fig. 3). For some of these genes and pathways, there was a different regulation by IL-1β and TNF-α, with TNF-α + IFN-γ preferentially inducing IL-15, chemokine (CXC-motif) ligand (CXCL) 9 (or Mig), CXCL10 (or IP-10), CCL5 (or RANTES), IRF-1, IRF-7, and signal transducer and activator of transcription-1 (STAT1)-α, while IL-1β preferentially upregulated CCL2 (or MCP-1) and CXCL1 (or Groα) (Table 1). These differences were to a large extent confirmed by real-time RT-PCR (Fig. 2,A). TNF-α–induced higher CCL5 and IRF-7 expression was also confirmed at the protein level (supplementary Fig. 4A–C). TNF-α + IFN-γ leads also to higher expression of IFN-β, a downstream gene of IRF-7, than IL-1β + IFN-γ (supplementary Fig. 4E). TNF-α–induced IRF-7 expression upregulates expression of IRF-1 and proinflammatory chemokines in other tissues (20,21). Use of a specific siRNA against IRF-7 induced a 90% knock down of IRF-7, which partially prevented TNF-α + IFN-γ–induced, but not IL-1β + IFN-γ–induced, IRF-1, CCL5 (confirmed at protein level) (supplementary Fig. 4C), IL-15, and CXCL10 expression (Fig. 2,B). The role of IRF-7 is apparently specific for genes preferentially induced by TNF-α + IFN-γ, since CXCL1 expression, which is higher after IL-1β + IFN-γ exposure (Fig. 2), was not significantly decreased by IRF-7 knock down (Fig. 2 B). These observations were confirmed by the use of a second siRNA against IRF-7 (data not shown).

FIG. 2.

TNF-α and IL-1β differentially modulate expression of β-cell genes involved in the inflammatory response. Gene expression was analyzed by real-time RT-PCR. A: FACS-purified rat β-cells were exposed or not (control) to IL-1β + IFN-γ (IL+IFN) or to TNF-α + IFN-γ (TNF+IFN) for 6 h (□) or 24 h (■). B: FACS-purified rat β-cells were transfected with siRNA control (□) or siRNA against IRF-7 (■) and exposed or not (control) to IL-1β + IFN-γ (IL+IFN) or to TNF-α + IFN-γ (TNF+IFN) for 24 h. Results are means ± SE of three to six independent experiments. *P < 0.05 vs. IL+IFN at the same time point; §P < 0.05 vs. siControl at the same time point and treatment.

FIG. 2.

TNF-α and IL-1β differentially modulate expression of β-cell genes involved in the inflammatory response. Gene expression was analyzed by real-time RT-PCR. A: FACS-purified rat β-cells were exposed or not (control) to IL-1β + IFN-γ (IL+IFN) or to TNF-α + IFN-γ (TNF+IFN) for 6 h (□) or 24 h (■). B: FACS-purified rat β-cells were transfected with siRNA control (□) or siRNA against IRF-7 (■) and exposed or not (control) to IL-1β + IFN-γ (IL+IFN) or to TNF-α + IFN-γ (TNF+IFN) for 24 h. Results are means ± SE of three to six independent experiments. *P < 0.05 vs. IL+IFN at the same time point; §P < 0.05 vs. siControl at the same time point and treatment.

Close modal

Differential modulation of the citrulline-NO cycle by IL-1β and TNF-α.

IL-1β + IFN-γ treatment in β-cells led to higher expression of inducible NO synthase (iNOS) (Table 1) and NO accumulation in the medium (supplementary Fig. 1B) than TNF-α + IFN-γ. iNOS utilizes arginine as the substrate for NO formation, generating citrulline as a by-product. Citrulline can be used to regenerate arginine by the citrulline-NO cycle (Fig. 3,A) (22), which is regulated by argininosuccinate synthetase (ASS) expression (22). The array analysis indicated that ASS is strongly induced by IL-1β + IFN-γ but not by TNF-α + IFN-γ (Table 1). In addition, IL-1β + IFN-γ inhibited the expression of arginase-1 (arg1) more efficiently than TNF-α + IFN-γ (Table 1), preserving arginine for NO formation (Fig. 3,A). In line with the mRNA data, IL-1β + IFN-γ, but not TNF-α + IFN-γ, induced NO formation in the absence of arginine but presence of citrulline (Fig. 3 B).

FIG. 3.

Differential usage of the NO synthesis pathway by IL-1β and TNF-α. A: Schematic view of the NO synthesis pathway. Elliptical shapes represent enzymes. B: Synthesis of NO by rat primary β-cells cultured in arginine-citrulline–free medium (▨) or in medium containing 1 mmol/l citrulline (□) and exposed to IL-1β + IFN-γ (IL+IFN) or TNF-α + IFN-γ (TNF+IFN) for 48 h. Results are mean of five independent experiments. *P < 0.05 vs. arginine-citrulline–free medium.

FIG. 3.

Differential usage of the NO synthesis pathway by IL-1β and TNF-α. A: Schematic view of the NO synthesis pathway. Elliptical shapes represent enzymes. B: Synthesis of NO by rat primary β-cells cultured in arginine-citrulline–free medium (▨) or in medium containing 1 mmol/l citrulline (□) and exposed to IL-1β + IFN-γ (IL+IFN) or TNF-α + IFN-γ (TNF+IFN) for 48 h. Results are mean of five independent experiments. *P < 0.05 vs. arginine-citrulline–free medium.

Close modal

Cytokines decrease the expression of genes involved in maintenance of a differentiated β-cell phenotype.

We next examined the expression of a group of 14 genes (Fig. 4) previously shown to be of particular relevance for the induction and maintenance of the differentiated phenotype in β-cells (23). These genes are either directly related to β-cell–differentiated functions (Fig. 4,A) or function as master regulatory transcription factors (Fig. 4,B). They were all inhibited by IL-1β + IFN-γ or TNF-α + IFN-γ, a finding confirmed by real-time RT-PCR for selected genes (Fig. 4,C). For many of these genes, inhibition was already present after 6 h of cytokine exposure (Fig. 4), suggesting an early and specific effect.

FIG. 4.

Cytokines decrease the expression of genes involved in the maintenance of a differentiated β-cell phenotype. Expression of genes related to β-cell function (A) or regulatory transcription factors (B) were analyzed by microarray (n = 3) in FACS-purified rat β-cells exposed to IL-1β + IFN-γ for 6 h (□) or 24 h (■) or to TNF-α + IFN-γ for 6 h (▨) or 24 h (vertical striped bars). Results are shown as fold change compared with control (no cytokine added), considered as one (line). C: confirmation by real-time RT-PCR of cytokine effects on the expression of PDX-1, MafA, and Isl1; □, 6 h; ■, 24 h. Results are means ± SE of three to four independent experiments. *P < 0.05; #P < 0.01; §P < 0.001 vs. control.

FIG. 4.

Cytokines decrease the expression of genes involved in the maintenance of a differentiated β-cell phenotype. Expression of genes related to β-cell function (A) or regulatory transcription factors (B) were analyzed by microarray (n = 3) in FACS-purified rat β-cells exposed to IL-1β + IFN-γ for 6 h (□) or 24 h (■) or to TNF-α + IFN-γ for 6 h (▨) or 24 h (vertical striped bars). Results are shown as fold change compared with control (no cytokine added), considered as one (line). C: confirmation by real-time RT-PCR of cytokine effects on the expression of PDX-1, MafA, and Isl1; □, 6 h; ■, 24 h. Results are means ± SE of three to four independent experiments. *P < 0.05; #P < 0.01; §P < 0.001 vs. control.

Close modal

Cytokines decrease the expression of genes encoding enzymes of the Krebs cycle.

Exposure of β-cells to IL-1β + IFN-γ or TNF-α + IFN-γ decreased to a similar extent expression of genes encoding enzymes of the Krebs cycle (Table 1, glucose metabolism). This was confirmed by real-time RT-PCR for seven of eight genes present in the Krebs cycle, with a more important inhibitory effect at 24 h (Fig. 5,A). The promoter region of these genes was analyzed by an in silico approach, and a binding site for (ATF4 identified as overrepresentative in this set of genes. ATF4 is induced by cytokines (Table 1 and Fig. 5,B) and has an important role in the unfolded protein response (UPR) in β-cells (24,25). Against this background, we analyzed the role of ATF4 knock down on cytokine-induced changes in Krebs cycle–regulating genes. Since both cytokine combinations have similar effects on this group of genes, we used only IL-1β + IFNγ. siRNA targeting ATF4 inhibited cytokine-induced ATF4 expression by >80% (Fig. 5,B). Expression of ATF3, an ATF4-regulated gene, was significantly decreased confirming functional consequences of ATF4 knock down (Fig. 5,E). Inhibition of ATF4 expression partially prevented the inhibitory effects of cytokines on the expression of the two Krebs cycles genes analyzed, namely malate dehydrogenase and α-ketoglutarate dehydrogenase (Fig. 5,C). ATF4 knock down was confirmed at the functional level by Western blot for ATF3, a downstream gene of ATF4. Cytokine-induced expression of ATF3 was prevented by ATF4 knock down, at a similar level of the inhibition observed when a siATF3 was used (Fig. 5 E).

FIG. 5.

Cytokines inhibit expression of genes encoding Krebs cycle enzymes, which is partially dependent of ATF4 activation. A: Confirmation by real-time RT-PCR of microarray analysis data in rat purified β-cells untreated (control) or exposed to a combination of IL-1β + IFN-γ (IL+IFN) or TNF-α + IFN-γ (TNF+IFN) for 6 h (□) or 24 h (■). Results are means ± SE of four to five independent experiments. *P ≥ 0.05 vs. control. B and C: β-Cells were transfected with siControl (□) or siATF4 (■) and then left untreated or treated with IL-1β + IFN-γ (IL+IFN) for 24 h. B: Confirmation of ATF4 knockdown (KD) by real-time RT-PCR. C: Effects of ATF4 KD on the expression of malate dehydrogenase and α-ketoglutarase dehydrogenase. Results are mean of six independent experiments. §P < 0.05 cytokines + siATF4 vs. cytokines + siControl. Dehy = dehydrogenase. E: Western blot for ATF3 protein in cells transfected with siATF4 or siATF3. The figure is representative of four independent experiments.

FIG. 5.

Cytokines inhibit expression of genes encoding Krebs cycle enzymes, which is partially dependent of ATF4 activation. A: Confirmation by real-time RT-PCR of microarray analysis data in rat purified β-cells untreated (control) or exposed to a combination of IL-1β + IFN-γ (IL+IFN) or TNF-α + IFN-γ (TNF+IFN) for 6 h (□) or 24 h (■). Results are means ± SE of four to five independent experiments. *P ≥ 0.05 vs. control. B and C: β-Cells were transfected with siControl (□) or siATF4 (■) and then left untreated or treated with IL-1β + IFN-γ (IL+IFN) for 24 h. B: Confirmation of ATF4 knockdown (KD) by real-time RT-PCR. C: Effects of ATF4 KD on the expression of malate dehydrogenase and α-ketoglutarase dehydrogenase. Results are mean of six independent experiments. §P < 0.05 cytokines + siATF4 vs. cytokines + siControl. Dehy = dehydrogenase. E: Western blot for ATF3 protein in cells transfected with siATF4 or siATF3. The figure is representative of four independent experiments.

Close modal

Cytokines decrease the expression of incretin and hormone receptors at least in part via activation of HIF-1α.

IL-1β + IFNγ and TNF-α + IFNγ inhibited the expression of key hormone receptors in rat β-cells (Table 1). This was confirmed by real-time RT-PCR for the receptors of glucagon-like peptide (GLP)-1, prolactin (PRL), growth hormone (GH), and cholecystokinin A (CCKA) (Fig. 6,A). Cytokine-induced inhibition was in the range of 50–90% and more marked after 24 h (Fig. 6,A). Analysis of the promoter region of these genes found a common binding site for the transcription factor HIF-1 (26,27). Cytokines upregulated transcriptional activity (Fig. 6,B) and mRNA expression (Table 1 and Fig. 6,C) of HIF-1α, the regulatory HIF-1 subunit (26). This could in part be explained by cytokine activation of AKT (supplementray Fig. 5,C). HIF-1α knock down inhibited by 75% cytokine-induced HIF-1α expression (Fig. 6,D) and by 60% HIF transcriptional activity (supplementary Fig. 5A and B). Knock down of HIF-1α partially prevented cytokine-induced apoptosis in β-cells (Fig. 6,D) and inhibition of two receptors analyzed, GLP-1 receptor (R) and PRLR (Fig. 6 E). This partial effect of HIF-1α knock down in GLP-1R and PRLR expression suggest that other transcription factors may be involved in this process, as supported by the in silico identification of other relevant candidate transcription factors (supplementary Table 8).

FIG. 6.

Cytokines decrease expression of key hormone receptor genes partially via HIF-1α induction. Rat purified β-cells were left untreated (control) or exposed to a combination of IL-1β + IFN-γ (IL+IFN) or TNF-α + IFN-γ (TNF+IFN). A: Real-time RT-PCR to confirm microarray analysis of hormone receptors (R) expression after cytokine exposure for 6 h (□) or 24 h (■). Results are means ± SE of three to four experiments. *P ≤ 0.05 vs. control. B: Luciferase reporter assay of HIF-1α activation by cytokines. Cells were cotransfected with an HRE luciferase reporter gene and the internal control pRL-CMV, then left untreated (▨) or exposed to IL+IFN (□) or the positive control Cobalt chloride (CoCl2, ■) for 12 h. Results are normalized for Renilla luciferase activity and are means ± SE of five experiments. *P < 0.05 vs. untreated cells. C–E: HIF-1α knockdown by siRNA. Cells were transfected with siControl (□) or siHIF-1α (■) and then left untreated or treated with IL+IFN for 24 h. Results are means ± SE of four to six experiments. C: HIF-1α knockdown analyzed by real-time RT-PCR. *P ≤ 0.05 vs. siControl under the same treatment and §P ≤ 0.05 vs. control (not cytokine treated). D: Viability of cells after HIF-1α knockdown and 48 h cytokine exposure. *P ≤ 0.05 vs. siControl + cytokines. E: Expression of PRLR and GLP-1R after HIF-1α knockdown and 24-h cytokine exposure, measured by real-time RT-PCR. *P ≤ 0.05 vs. siControl + cytokines.

FIG. 6.

Cytokines decrease expression of key hormone receptor genes partially via HIF-1α induction. Rat purified β-cells were left untreated (control) or exposed to a combination of IL-1β + IFN-γ (IL+IFN) or TNF-α + IFN-γ (TNF+IFN). A: Real-time RT-PCR to confirm microarray analysis of hormone receptors (R) expression after cytokine exposure for 6 h (□) or 24 h (■). Results are means ± SE of three to four experiments. *P ≤ 0.05 vs. control. B: Luciferase reporter assay of HIF-1α activation by cytokines. Cells were cotransfected with an HRE luciferase reporter gene and the internal control pRL-CMV, then left untreated (▨) or exposed to IL+IFN (□) or the positive control Cobalt chloride (CoCl2, ■) for 12 h. Results are normalized for Renilla luciferase activity and are means ± SE of five experiments. *P < 0.05 vs. untreated cells. C–E: HIF-1α knockdown by siRNA. Cells were transfected with siControl (□) or siHIF-1α (■) and then left untreated or treated with IL+IFN for 24 h. Results are means ± SE of four to six experiments. C: HIF-1α knockdown analyzed by real-time RT-PCR. *P ≤ 0.05 vs. siControl under the same treatment and §P ≤ 0.05 vs. control (not cytokine treated). D: Viability of cells after HIF-1α knockdown and 48 h cytokine exposure. *P ≤ 0.05 vs. siControl + cytokines. E: Expression of PRLR and GLP-1R after HIF-1α knockdown and 24-h cytokine exposure, measured by real-time RT-PCR. *P ≤ 0.05 vs. siControl + cytokines.

Close modal

Cytokines regulate the splicing machinery and alternative splicing in primary β-cells.

A large number of cytokine-modified genes are involved in alternative splicing (Table 1, splicing machinery). To determine whether this triggers modifications in the splice variants present in β-cells, 24-h cytokine-treated samples from the three β-cell–independent preparation/experiments used in the initial array analysis (Fig. 1 and Table 1) were pooled as previously described (7,9) and analyzed for the presence of splice variants using the rat exon-array from Affymetrix. Cytokine treatment led to important changes in alternative splicing, with IL-1β + IFNγ potentially modulating differential splicing of 2,651 genes (21% of the total number of the expressed genes) (supplementary Table 9, Fig. 7,A). From these, only 396 were also modified at the expression level. These findings suggest that >50% of IL-1β + IFN-γ–modulated genes undergo alternative splicing. For TNF-α + IFN-γ, there was induction of alternative splicing in 2,206 genes (19%), with only 207 of these being also modified at expression level (supplementary Table 10, Fig. 7,A). The spliced genes were classified according with their putative molecular function as shown in supplementary Tables 11 and 12. Alternative splicing was confirmed for three genes analyzed by RT-PCR (Fig. 7), namely iNOS and ASS, which participate in the citrulline-NO cycle (Fig. 3,A) and the NF-κB subunit p100/p52 (NF-κB2). iNOS was not detected in control cells, but it was induced by cytokines, and there was a difference in the size of the amplified region after 6 and 24 h of cytokine treatment (Fig. 7,C). At 6 h, there was amplification of two bands of 1,237 and 1,137 bp, the second one corresponding to iNOS lacking exon 8 or 9 (by sequencing analysis of the PCR product we confirmed that exon 8 is missing (data not shown), while at 24 h the majority of the amplified bands contained exon 8 (Fig. 7,C). This confirms that posttranscriptional processing of iNOS is differentially modified by cytokines at different time points. Using the same approach, we observed that cytokines decreased utilization of exon 1 from ASS while it increased utilization of exon 22 from NF-κB2 (Fig. 7 C).

FIG. 7.

Cytokines induce alternative splicing in rat pancreatic β-cells. A: Ven diagram representing the number of β-cell genes that undergo alternative splicing (alternative splicing) and/or expression (Exp) changes after 24 h of cytokine treatment compared with control condition, as identified by exon array analysis (GeneChip Rat exon 1.0 ST Array). B: Schematic diagram of inducible iNOS, ASS, and NFκB subunit p100/p52 exon structures and of the PCR primers presently used to identify spliced forms. Start (ATG) and stop (TGA or TAG) codons are indicated in the figure. The arrows show the positions of the PCR primers, while the lines below indicate the size of the amplified region in the presence or absence of the respective exon analyzed. C: RT-PCR of rat primary β-cells exposed to control condition (C), IL-1β + IFN-γ (IL), or TNF-α + IFN-γ (TNF) for 6 or 24 h to amplify the regions of iNOS, ASS, and NF-κB indicated in B. GAPDH was amplified in parallel to control for the amount of cDNA loaded in each reaction. The figure is representative of three to five experiments.

FIG. 7.

Cytokines induce alternative splicing in rat pancreatic β-cells. A: Ven diagram representing the number of β-cell genes that undergo alternative splicing (alternative splicing) and/or expression (Exp) changes after 24 h of cytokine treatment compared with control condition, as identified by exon array analysis (GeneChip Rat exon 1.0 ST Array). B: Schematic diagram of inducible iNOS, ASS, and NFκB subunit p100/p52 exon structures and of the PCR primers presently used to identify spliced forms. Start (ATG) and stop (TGA or TAG) codons are indicated in the figure. The arrows show the positions of the PCR primers, while the lines below indicate the size of the amplified region in the presence or absence of the respective exon analyzed. C: RT-PCR of rat primary β-cells exposed to control condition (C), IL-1β + IFN-γ (IL), or TNF-α + IFN-γ (TNF) for 6 or 24 h to amplify the regions of iNOS, ASS, and NF-κB indicated in B. GAPDH was amplified in parallel to control for the amount of cDNA loaded in each reaction. The figure is representative of three to five experiments.

Close modal

We have presently used state-of-the-art array analysis of fluorescence-activated cell sorter–purified β-cells to unveil the global pattern of genes modified by the inflammatory cytokines IL-1β + IFN-γ and TNF-α + IL-1β. The use of primary and pure cell preparations (>90% β-cells) is of special relevance, since it enabled us to obtain a broad picture of β-cell responses to proapoptotic inflammatory mediators without the confounding signals generated by other endocrine and nonendocrine islet cells. We cannot, however, discard that interactions between β-cells and others cells in the islets, and with infiltrating mononuclear cells during insulitis, will lead to changes in β-cell gene expression that are not detected by the present model. The array data were evaluated by both nonbiased pathway analysis (IPA) and investigator-based analysis. Selected pathways were chosen for additional studies, with special emphasis on the role of novel transcription factors. Prompted by the observation of cytokine-induced changes in a large number of genes involved in alternative splicing, an exon-array analysis was performed to evaluate the presence of splicing variants in β-cells. The following are main novel observations of the study. 1) Nearly 8,000 genes were detected as present in β-cell, with 96% confirmation of selected cytokine-modified genes by real-time RT-PCR. This more than doubles the known β-cell expressed genes. 2) There are temporal, qualitative, and quantitative differences in the genes induced by TNF-α and IL-1β regarding inflammation and NO production. This is probably secondary to the differential expression and usage of transcription factors such as NF-κB and IRF-7. 3) Key gene networks related to β-cell–differentiated phenotype and the Krebs cycle are similarly inhibited by TNF-α + IFN-γ and IL-1β + IFN-γ. 4) Cytokines induce major changes in alternative splicing of genes, indicating a novel level of functional regulation in β-cells.

IL-1β + IFN-γ induces a higher expression of iNOS and ASS and a more marked inhibition of arg1 as compared with TNF-α + IFN-γ, leading to higher NO production from either arginine or citrulline (supplementary Fig. 1B and Fig. 3). This enables continuous NO production in inflammation sites where arginine is usually depleted. NO formation induced by proinflammatory cytokines contributes for β-cell death in some rodent models of diabetes (1). Furthermore, 46% of cytokine-modulated genes are NO dependent in INS-1E cells (8), suggesting that differences in NO production may explain why IL-1β + IFN-γ modulates a higher number of genes compared with TNF-α + IFN-γ at 24 h (Fig. 1).

Exposure of β-cells to proinflammatory cytokines during insulitis induce release of chemokines and cytokines, which may contribute to recruit and activate immune cells and thus amplify local inflammation and the autoimmune assault (2,10). The present data suggest differential roles for IL-1β and TNF-α in this “dialogue” between the β-cells and the immune system. Thus, while TNF-α + IFN-γ induces higher expression of IL-15, CCL5, CXCL9, and CXCL10, IL-1β + IFN-γ preferentially induces CCL2 and CXCL1. These inflammatory mediators contribute for insulitis and destruction of β-cells by the immune system (1,2,10), and the present observations suggest that the balance between TNF-α and IL-1β expression during insulitis can lead to different outcomes. These differences may reflect differential usage of two key transcription factors, namely NF-κB and IRF-7. Thus, higher and earlier activation of NF-κB by IL-1β + IFN-γ, as presently shown in primary β-cells, probably explains the higher expression of NF-κB target genes such as CCL2 (28). On the other hand, TNF-α preferentially triggers IRF-7 and IRF-1 activation (present data). In other cell types, TNF-α–induced IFN-β expression synergistically activates the IRF-7/1–STAT-1 pathway, leading to sustained expression of cytokines and chemokines (21). TNF-α + IFN-γ leads to higher induction of IFN-β expression in β-cells than IL-1β + IFN-γ, which may explain the differences in the expression of chemokines/cytokines induced by IL-1β or TNF-α. The role of STAT-1 in this process was previously shown in islets from STAT-1 knockout mice (29), and we presently show that IRF-7 knock down partially prevents TNF-α + IFN-β–induced expression of IRF-1, IL-15, CCL5, and CXCL1.

Loss of differentiated β-cell functions is another important consequence of exposure to cytokines (30). We presently describe three gene networks whose inhibition may contribute to this outcome, namely key transcription factors for the maintenance of β-cell phenotype, mRNAs encoding receptors for growth factors and incretins, and mRNAs encoding enzymes of the Kreb's cycle. Zhou et al. (23) reported that inducing expression of the transcription factors neurogenin 3 (Ngn3), pancreatic and duodenal homeobox-1 (Pdx-1), and mammalian homologue of avian MafA/L-Maf (MafA) reprograms pancreatic mouse exocrine cells into cells that closely resemble β-cells. Reprogramming of pancreatic exocrine cells to β-cells should benefit patients with type 1 diabetes, an autoimmune disease characterized by local inflammation (2,10). Insulin epitopes are targets of the immune assault in type 1 diabetes (31), and new insulin-producing cells will be recognized and attacked by the immune system (32). The present data suggest that immune mediators of insulitis, such as cytokines, will push back newly developed β-cells into a dedifferentiated state, preceding actual β-cell death.

The hormones GLP-1, CCKA, PRL, and GH are involved in mitotic and functional activation of rodent β-cells (33,34). Due to these characteristics, GLP-1 analogs are being presently tested as an adjuvant therapy in early type 1 diabetes (35). Of concern, cytokines induce an early and profound inhibition of mRNAs encoding for the receptors of GLP-1, CCKA, PRL, and GH, which may prevent the restorative effects of these hormones. These mRNAs are inhibited in parallel, suggesting the role for a common inhibitory transcription factor downstream of cytokines. In silico analysis and siRNA experiments suggest that HIF-1α is at least in part involved in this inhibitory effect of cytokines. HIF-1 is a key regulator of adaptive cellular responses to hypoxia, and it is active when its regulatory subunit HIF-1α is stabilized during hypoxia (26). HIF-1α stabilization/activation has important roles in other cellular responses, such as glucose metabolism, cell growth/apoptosis, and the inflammatory response (26,36,37). We now show that cytokines induce both HIF-1α mRNA expression and transcriptional activity in β-cells and that HIF-1α knock down partially prevents cytokine-induced inhibition of key hormone receptors and β-cell apoptosis. This suggests a novel role for HIF-1α in β-cells, as one of the mediators of cytokine-induced β-cell dysfunction and death. Of note, prolonged β-cell exposure to high glucose triggers HIF-1α expression (38), while constitutive HIF-1α expression in β-cells impairs glucose-stimulated insulin release (39).

We have previously shown that cytokine-induced NO formation in β-cells inhibits mitochondrial glucose oxidation via functional impairment of the enzyme aconitase (40). We presently show that cytokines also inhibit expression of several mRNAs encoding enzymes of the Krebs cycle. This is mediated, at least in part, via ATF4 activation, as suggested by both in silico analysis and siRNA. The transcription factor ATF4 is part of the UPR response in cytokine-treated β-cells (24,25). Endoplasmic reticulum stress may contribute to HIF-1α activation (41), potentially linking three cytokine-induced effects in β-cells, namely endoplasmic reticulum stress, HIF-1α activation, and inhibition of the Krebs cycle. Additional experiments are now required to further investigate this possibility and to clarify how gene networks regulating mitochondria and endoplasmic reticulum function may provide the signaling for β-cell apoptosis.

Cytokines modulate expression of several genes related to the alternative splicing machinery (present data), which is in line with recent proteomic data (42). Alternative splicing is an important determinant of cellular function. More than 85% of the human genes may undergo alternative splicing (14,43), and many of these spliced forms are tissue specific, contributing for the generation of proteomic diversity (43). The complex interactions required for correct splicing can be disturbed by changes in the expression of splicing factors and cellular energy stores (15,44). By exon-array analysis, we presently observed that cytokines modulate the expression of splicing variants in β-cells, with potentially 20% of the detected genes showing alternative splicing. This findings must be interpreted with caution, since they represent a pool of three experiments that precludes adequate statistical analysis. In addition, this methodology can lead to false positive detection (45). Here, for at least three of the modified genes (iNOS ASS, and NF-κB2) there was independent confirmation by RT-PCR. Cytokine-induced iNOS splicing variants may provide another level of regulation of iNOS activity in a tissue-specific way (46). Many of the presently identified genes are modified only at the splicing level, without changes in expression. This indicates a new level of complexity in the effects of cytokines (and potentially of other modulators of β-cell function and survival) that must be taken into account in future studies. The functional impact of these diverse splice variants in β-cells remain to be investigated, but data available from other tissues indicate that it is huge, increasing the number of molecule species that are involved in normal regulation of cell or disease susceptibility (14,16,43,47,48). Interestingly, splicing may also have a role in the augmentation of autoimunity in type 1 diabetes (49).

In conclusion, the present study doubles the number of known genes modified by cytokines in primary rat β-cells and suggests temporal, qualitative, and quantitative differences between the effects of TNF-α + IFN-γ and IL-1β + IFN-γ. Cytokines decrease the expression of genes related to β-cell function and growth/regeneration, indicating that immune mediators of insulitis can push back newly formed β-cells into a dedifferentiated state. Interestingly, cytokines modify alternative splicing in β-cells, indicating a new level of complexity in the β-cell responses to immune-mediated damage.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

See accompanying commentary, p. 335.

This work has been supported by grants from the European Union (Projects Savebeta and Naimit in the Framework Programs 6 and 7 of the European Community); the FNRS (Fonds National de la Recherche Scientifique) and ARC (Actions de Recherche Concerteé de la Communauté Française), Belgium; the Belgium Program on Interuniversity Poles of Attraction initiated by the Belgian state (IUAP P5/17 and P6/40); and the Expert Center Grant 2008.40.001 from the Dutch Diabetes Research Foundation. M.L.C. is the recipient of a scholarship from CAPES (Brazilian Coordination for the Improvement of Higher Education Personnel). F.M. is the recipient of a Postdoctoral Fellowship from FNRS, Belgium. No potential conflicts of interest relevant to this article were reported.

We thank the personnel from Laboratory of Experimental Medicine–Université Libre de Bruxelles, M.A. Neef, G. Vandenbroeck, M. Urbain, J. Schoonheydt, R. Leeman, S. Mertens, R. Makhnas, and A.E. Musaya for excellent technical support.

1.
Eizirik
DL
,
Mandrup-Poulsen
T
:
A choice of death-the signal-transduction of immune-mediated β-cell apoptosis
.
Diabetologia
2001
;
44
:
2115
2133
2.
Kaminitz
A
,
Stein
J
,
Yaniv
I
,
Askenasy
N
:
The vicious cycle of apoptotic β-cell death in type 1 diabetes
.
Immunol Cell Biol
2007
;
85
:
582
589
3.
Uno
S
,
Imagawa
A
,
Okita
K
,
Sayama
K
,
Moriwaki
M
,
Iwahashi
H
,
Yamagata
K
,
Tamura
S
,
Matsuzawa
Y
,
Hanafusa
T
,
Miyagawa
J
,
Shimomura
I
:
Macrophages and dendritic cells infiltrating islets with or without β-cells produce tumour necrosis factor-α in patients with recent-onset type 1 diabetes
.
Diabetologia
2007
;
50
:
596
601
4.
Mastrandrea
L
,
Yu
J
,
Behrens
T
,
Buchlis
J
,
Albini
C
,
Fourtner
S
,
Quattrin
T
:
Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study
.
Diabetes Care
2009
;
32
:
1244
1249
5.
Pickersgill
LM
,
Mandrup-Poulsen
TR
:
The anti-interleukin-1 in type 1 diabetes action trial-background and rationale
.
Diabetes Metab Res Rev
2009
;
25
:
321
324
6.
Eizirik
DL
,
Moore
F
,
Flamez
D
,
Ortis
F
:
Use of a systems biology approach to understand pancreatic β-cell death in type 1 diabetes
.
Biochem Soc Trans
2008
;
36
:
321
327
7.
Cardozo
AK
,
Kruhoffer
M
,
Leeman
R
,
Orntoft
T
,
Eizirik
DL
:
Identification of novel cytokine-induced genes in pancreatic β-cells by high-density oligonucleotide arrays
.
Diabetes
2001
;
50
:
909
920
8.
Kutlu
B
,
Cardozo
AK
,
Darville
MI
,
Kruhoffer
M
,
Magnusson
N
,
Orntoft
T
,
Eizirik
DL
:
Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells
.
Diabetes
2003
;
52
:
2701
2719
9.
Cardozo
AK
,
Heimberg
H
,
Heremans
Y
,
Leeman
R
,
Kutlu
B
,
Kruhoffer
M
,
Orntoft
T
,
Eizirik
DL
:
A comprehensive analysis of cytokine-induced and nuclear factor-κB-dependent genes in primary rat pancreatic β-cells
.
J Biol Chem
2001
;
276
:
48879
48886
10.
Eizirik
DL
,
Colli
ML
,
Ortis
F
:
The role of inflammation in insulitis and β-cell loss in type 1 diabetes
.
Nat Rev Endocrinol
2009
;
5
:
219
226
11.
Ortis
F
,
Cardozo
AK
,
Crispim
D
,
Storling
J
,
Mandrup-Poulsen
T
,
Eizirik
DL
:
Cytokine-induced pro-apoptotic gene expression in insulin-producing cells is related to rapid, sustained and non-oscillatory NF-κB activation
.
Mol Endocrinol
2006
;
20
:
1867
1879
12.
Ortis
F
,
Pirot
P
,
Naamane
N
,
Kreins
AY
,
Rasschaert
J
,
Moore
F
,
Théatre
E
,
Verhaeghe
C
,
Magnusson
N
,
Chariot
A
,
Orntoft
T
,
Eizirik
DL
:
TNF-α and IL-1β induction of NF-κB and its downstream genes has a pro-apoptotic role in pancreatic β-cells
.
Diabetologia
2008
;
51
:
1213
1225
13.
Magnusson
NE
,
Cardozo
AK
,
Kruhoffer
M
,
Eizirik
DL
,
Orntoft
TF
,
Jensen
JL
:
Construction and validation of the APOCHIP, a spotted oligo-microarray for the study of β-cell apoptosis
.
BMC Bioinformatics
2005
;
6
:
311
14.
Pan
Q
,
Shai
O
,
Lee
LJ
,
Frey
BJ
,
Blencowe
BJ
:
Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
.
Nat Genet
2008
; 
40
:
1413
1415
15.
Blencowe
BJ
:
Alternative splicing: new insights from global analyses
.
Cell
2006
;
126
:
37
47
16.
Colobran
R
,
Pujol-Borrell
R
,
Armengol
MP
,
Juan
M
:
The chemokine network: II. on how polymorphisms and alternative splicing increase the number of molecular species and configure intricate patterns of disease susceptibility
.
Clin Exp Immunol
2007
;
150
:
1
12
17.
Thomas
HE
,
McKenzie
MD
,
Angstetra
E
,
Campbell
PD
,
Kay
TW
:
β-Cell apoptosis in diabetes
.
Apoptosis
2009
;
14
:
1389
1404
18.
Wu
Z
,
Irizarry
RA
,
Gentleman
R
,
Martinez-Murillo
F
,
Spencer
F
:
A model based background adjustment for oligonucleotide expression array
.
J Am Stat Assoc
2004
;
99
:
909
917
19.
Moore
F
,
Colli
ML
,
Cnop
M
,
Esteve
MI
,
Cardozo
AK
,
Cunha
DA
,
Bugliani
M
,
Marchetti
P
,
Eizirik
DL
:
PTPN2, a candidate gene for type 1 diabetes, modulates interferon-γ–induced pancreatic β-cell apoptosis
.
Diabetes
2009
;
58
:
1283
1291
20.
Sgarbanti
M
,
Marsili
G
,
Remoli
AL
,
Orsatti
R
,
Battistini
A
:
IRF-7: new role in the regulation of genes involved in adaptive immunity
.
Ann N Y Acad Sci
2007
;
1095
:
325
333
21.
Yarilina
A
,
Park-Min
KH
,
Antoniv
T
,
Hu
X
,
Ivashkiv
LB
:
TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes
.
Nat Immunol
2008
;
9
:
378
387
22.
Flodstrom
M
,
Niemann
A
,
Bedoya
FJ
,
Morris
SM
 Jr
,
Eizirik
DL
:
Expression of the citrulline-nitric oxide cycle in rodent and human pancreatic β-cells: induction of argininosuccinate synthetase by cytokines
.
Endocrinology
1995
;
136
:
3200
3206
23.
Zhou
Q
,
Brown
J
,
Kanarek
A
,
Rajagopal
J
,
Melton
DA
:
In vivo reprogramming of adult pancreatic exocrine cells to β-cells
.
Nature
2008
;
1476
4687
24.
Eizirik
DL
,
Cardozo
AK
,
Cnop
M
:
The role for endoplasmic reticulum stress in diabetes mellitus
.
Endocr Rev
2008
; 
29
:
42
61
25.
Cardozo
AK
,
Ortis
F
,
Storling
J
,
Feng
YM
,
Rasschaert
J
,
Tonnesen
M
,
Van Eylen
F
,
Mandrup-Poulsen
T
,
Herchuelz
A
,
Eizirik
DL
:
Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic β-cells
.
Diabetes
2005
;
54
:
452
461
26.
Ke
Q
,
Costa
M
:
Hypoxia-inducible factor-1 (HIF-1)
.
Mol Pharmacol
2006
;
70
:
1469
1480
27.
O'Hagan
KA
,
Cocchiglia
S
,
Zhdanov
AV
,
Tambuwala
MM
,
Cummins
EP
,
Monfared
M
,
Agbor
TA
,
Garvey
JF
,
Papkovsky
DB
,
Taylor
CT
,
Allan
BB
:
PGC-1α is coupled to HIF-1α-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells
.
Proc Natl Acad Sci U S A
2009
;
106
:
2188
2193
28.
Kutlu
B
,
Darville
MI
,
Cardozo
AK
,
Eizirik
DL
:
Molecular regulation of monocyte chemoattractant protein-1 expression in pancreatic β-cells
.
Diabetes
2003
;
52
:
348
355
29.
Gysemans
CA
,
Ladriere
L
,
Callewaert
H
,
Rasschaert
J
,
Flamez
D
,
Levy
DE
,
Matthys
P
,
Eizirik
DL
,
Mathieu
C
:
Disruption of the γ-interferon signaling pathway at the level of signal transducer and activator of transcription-1 prevents immune destruction of β-cells
.
Diabetes
2005
;
54
:
2396
2403
30.
Cnop
M
,
Welsh
N
,
Jonas
JC
,
Jorns
A
,
Lenzen
S
,
Eizirik
DL
:
Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities
.
Diabetes
2005
;
54
(
Suppl. 2
):
S97
S107
31.
Kent
SC
,
Chen
Y
,
Bregoli
L
,
Clemmings
SM
,
Kenyon
NS
,
Ricordi
C
,
Hering
BJ
,
Hafler
DA
:
Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope
.
Nature
2005
;
435
:
224
228
32.
Sibley
RK
,
Sutherland
DE
,
Goetz
F
,
Michael
AF
:
Recurrent diabetes mellitus in the pancreas iso- and allograft: a light and electron microscopic and immunohistochemical analysis of four cases
.
Lab Invest
1985
;
53
:
132
144
33.
Nielsen
JH
,
Svensson
C
,
Galsgaard
ED
,
Moldrup
A
,
Billestrup
N
:
β-Cell proliferation and growth factors
.
J Mol Med
1999
;
77
:
62
66
34.
Ahrén
B
:
Potentiators and inhibitors of insulin secretion
. In
Advances in Molecular Cell Biology
. 
Vol. 29.
Bittar
EE
,
Howel
SL
Eds.
Greenwich, CT
,
Jay Press
,
1999
, p.
191
202
35.
Suarez-Pinzon
WL
,
Power
RF
,
Yan
Y
,
Wasserfall
C
,
Atkinson
M
,
Rabinovitch
A
:
Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice
.
Diabetes
2008
;
57
:
3281
3288
36.
Dehne
N
,
Brune
B
:
HIF-1 in the inflammatory microenvironment
.
Exp Cell Res
2009
;
315
:
1791
1797
37.
Piret
JP
,
Mottet
D
,
Raes
M
,
Michiels
C
:
Is HIF-1α a pro- or an anti-apoptotic protein?
Biochem Pharmacol
2002
;
64
:
889
892
38.
Bensellam
M
,
Jonas
J-C
:
High glucose activates hypoxia inducible factors 1 and 2 in cultured rat islets and INS-1E cell monolayers
. In
Proceedings of the 44th Annual Meeting of the European Association for the Study of Diabetes
,
Rome, Italy
,
7–11 September 2008
39.
Gribble
FM
:
Intolerant of glucose and gasping for oxygen
.
J Clin Invest
2009
; 
15
:
247
249
40.
Welsh
N
,
Eizirik
DL
,
Bendtzen
K
,
Sandler
S
:
Interleukin-1 β-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase
.
Endocrinology
1991
;
129
:
3167
3173
41.
Werno
C
,
Zhou
J
,
Brune
B
:
A23187, ionomycin and thapsigargin upregulate mRNA of HIF-1α via endoplasmic reticulum stress rather than a rise in intracellular calcium
.
J Cell Physiol
2008
;
215
:
708
714
42.
D'Hertog
W
,
Overbergh
L
,
Lage
K
,
Ferreira
GB
,
Maris
M
,
Gysemans
C
,
Flamez
D
,
Cardozo
AK
,
Van den Bergh
G
,
Schoofs
L
,
Arckens
L
,
Moreau
Y
,
Hansen
DA
,
Eizirik
DL
,
Waelkens
E
,
Mathieu
C
:
Proteomics analysis of cytokine-induced dysfunction and death in insulin-producing INS-1E cells: new insights into the pathways involved
.
Mol Cell Proteomics
2007
;
6
:
2180
2199
43.
Wang
ET
,
Sandberg
R
,
Luo
S
,
Khrebtukova
I
,
Zhang
L
,
Mayr
C
,
Kingsmore
SF
,
Schroth
GP
,
Burge
CB
:
Alternative isoform regulation in human tissue transcriptomes
.
Nature
2008
;
456
:
470
476
44.
Long
JC
,
Caceres
JF
:
The SR protein family of splicing factors: master regulators of gene expression
.
Biochem J
2009
;
417
:
15
27
45.
Gaidatzis
D
,
Jacobeit
K
,
Oakeley
EJ
,
Stadler
MB
:
Overestimation of alternative splicing caused by variable probe characteristics in exon arrays
.
Nucleic Acid Res
2009
; 
37
:
e107
46.
Eissa
NT
,
Strauss
AJ
,
Haggerty
CM
,
Choo
EK
,
Chu
SC
,
Moss
J
:
Alternative splicing of human inducible nitric-oxide synthase mRNA. tissue-specific regulation and induction by cytokines
.
J Biol Chem
1996
;
271
:
27184
27187
47.
Gardina
PJ
,
Clark
TA
,
Shimada
B
,
Staples
MK
,
Yang
Q
,
Veitch
J
,
Schweitzer
A
,
Awad
T
,
Sugnet
C
,
Dee
S
,
Davies
C
,
Williams
A
,
Turpaz
Y
:
Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array
.
BMC Genomics
2006
;
7
:
325
48.
Zhang
W
,
Duan
S
,
Bleibel
WK
,
Wisel
SA
,
Huang
RS
,
Wu
X
,
He
L
,
Clark
TA
,
Chen
TX
,
Schweitzer
AC
,
Blume
JE
,
Dolan
ME
,
Cox
NJ
:
Identification of common genetic variants that account for transcript isoform variation between human populations
.
Hum Genet
2009
; 
125
:
81
93
49.
Diez
J
,
Park
Y
,
Zeller
M
,
Brown
D
,
Garza
D
,
Ricordi
C
,
Hutton
J
,
Eisenbarth
GS
,
Pugliese
A
:
Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against the IA-2 type 1 diabetes autoantigen
.
Diabetes
2001
;
50
:
895
900