Resistance to the action of insulin affects fatty acid delivery to the liver, fatty acid synthesis and oxidation within the liver, and triglyceride export from the liver. To understand the metabolic consequences of hepatic fatty acid synthesis, partitioning, oxidation, and net liver fat content in the fasted and postprandial states, we used stable-isotope tracer methodologies to study healthy men and women with varying degrees of insulin resistance before and after consumption of a mixed meal. Subjects were classified as being normoinsulinemic (NI) (fasting plasma insulin <11.2 mU/L, n = 18) or hyperinsulinemic (HI) (fasting plasma insulin >11.2 mU/L, n = 19). Liver fat content was similar between HI and NI individuals, despite HI subjects having marginally more visceral fat. However, de novo lipogenesis was higher and fatty acid oxidation was lower in HI individuals compared with NI subjects. These data suggest that metabolic pathways promoting fat accumulation are enhanced in HI but, paradoxically, without any significant effect on liver fat content when observed in healthy people. This is likely to be explained by increased triglyceride secretion as observed by hypertriglyceridemia.

Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome (1), encompasses a spectrum of conditions from hepatic steatosis through to cirrhosis (2); obesity is a known risk factor. Why intrahepatocellular fat starts to accumulate remains unclear, but it is likely to involve an imbalance between fatty acid (FA) delivery to the liver, FA synthesis and oxidation within the liver, and triglyceride (TG) export from the liver (3). Insulin plays a key role in all of these processes.

Within the liver, insulin has dual action: 1) it stimulates the phosphorylation of the transcription factor Forkhead box protein O1 (FoxO1), which activates gluconeogenesis, and 2) it activates the transcription factor sterol regulatory element-binding protein 1c (SREBP-1c), which enhances the transcription of genes required for FA and TG synthesis (4,5). The induction of FA synthesis (de novo lipogenesis [DNL]) may contribute to insulin resistance (6). In insulin resistance, the FoxO1 pathway becomes resistant to insulin, so gluconeogenesis continues while insulin sensitivity is maintained in the SREBP-1c pathway, leading to accelerated DNL (4). Enhanced hepatic DNL may have significant qualitative implications because the primary FA product is saturated (palmitoyl-CoA) (7,8) which may interfere with cellular function (9), and the entry of fatty acyl-CoA into the mitochondrion is dependent on carnitine palmitoyltransferase 1 (CPT1); malonyl-CoA, an intermediate in the DNL pathway, is a potent inhibitor of this (10). Taken together, this may lead to enhanced VLDL-TG production and a net retention of intrahepatocellular TG (4,5). Positive associations between hepatic DNL and VLDL-TG production rates have been reported (11,12).

Insulin plays a key role in regulating FA delivery to the liver. In the fasting state, plasma nonesterified FAs (NEFAs) arise predominantly from the hydrolysis of adipose tissue TG. Fasting plasma insulin concentrations have been inversely associated with NEFA release from subcutaneous abdominal adipose tissue (13). Plasma NEFA concentrations decrease after the consumption of a mixed meal due to the antilipolytic action of insulin suppressing the hydrolysis of adipose tissue TG. Spillover FAs derived from the peripheral lipoprotein lipase-mediated lipolysis of chylomicron-TG (1416) may somewhat reduce but do not override this effect (13).

Hepatic steatosis is often seen in the context of hepatic insulin resistance, but whether hepatic steatosis causes insulin resistance or whether insulin resistance causes hepatic steatosis is unclear (17). Because insulin has the potential to influence hepatic FA synthesis and postprandial partitioning, we aimed to determine the effect of global insulin resistance on hepatic FA synthesis and partitioning in healthy men and women in the fasted state and after the consumption of a mixed test meal.

Participants and Protocol

The study recruited 37 subjects from the Oxford BioBank (www.oxfordbiobank.org.uk) (18) and by advertisement; of these, 19 were considered hyperinsulinemic (HI), with a fasting plasma insulin concentration greater than the 75th centile (11.2 mU/L) of the Oxford BioBank (14), and 18 were considered normoinsulinemic (NI). All volunteers were considered nondiabetic and free from any known disease, had a BMI of <30 kg/m2, were not taking medication known to affect lipid or glucose metabolism, did not smoke, and did not consume alcohol above recommended limits (2). The study was approved by Portsmouth Clinical Research Ethics Committee, and all subjects gave written informed consent. Data from a portion of the subjects reported in this work were obtained as part of another previously published study (19).

Liver Fat and Body Composition

Intrahepatic lipid content was measured after an overnight fast and within 2 weeks of the metabolic study day by proton MRS (1H-MRS) (20). As part of the 1H-MRS spectra of liver metabolites, hepatic glycogen was measured (one peak, chemical shift 3.984), and content as a percentage of the liver water determined. Whole-body composition and fat distribution were measured using DEXA (21).

Metabolic Study Day

Before the study day, subjects were asked to avoid foods naturally enriched in 13C, alcohol, and strenuous exercise. The evening before the study day, subjects consumed deuterated water (2H2O) (3 g/kg body water) and continued to consume 2H2O during the course of the study day for the measurement of fasting and postprandial hepatic DNL (19). On the study day, after an overnight fast and consumption of 2H2O, subjects came to the Clinical Research Unit. A cannula was inserted into an antecubital vein, and baseline (time 0) blood and breath samples were taken. Participants were fed a mixed test meal containing 40 g carbohydrate and 40 g fat, with 200 mg of [U13C]palmitic acid added to trace the fate of the dietary FA (19), and at 360 min were given a glucose drink (75 g glucose) to assess the second meal effect (22). Repeated blood and breath samples were taken during the study period. Indirect calorimetry was performed in the fasting state and then 120 min after meal consumption using a GEM calorimeter (GEMNutrition Ltd., Daresbury, Cheshire, U.K.) to determine whole-body CO2 production, whole-body respiratory exchange ratio (RER), and basal energy expenditure.

Analytical Methods

Whole blood was collected into heparinized syringes (Starstedt, Leicester, U.K.), and plasma was rapidly separated by centrifugation at 4°C for the measurement of plasma metabolite and insulin concentrations, as previously described (14).

Separations of chylomicron of Svedberg flotation rate (Sf) >400 and VLDL-rich fraction (Sf20-400) were made by sequential flotation using density gradient ultracentrifugation, as previously described (14). The Sf 20-400 fraction was further separated by immunoaffinity chromatography to obtain a fraction completely devoid of apolipoprotein (apo)B48 and will hereafter be called VLDL (14).

Samples were taken at 0, 30, 60, 90, 120, 180, 240, 300, 360, 390, and 420 min after the consumption of the test meal for the measurement of plasma glucose, insulin, TG, NEFA, 3-hydroxybutyrate (3OHB), chylomicron-TG, and TG-rich lipoproteins (TRL)-TG and at 0, 180, 240, 300, 360, and 420 min for the analysis of VLDL-TG. Breath samples were collected at 0, 60, 90, 120, 180, 240, 300, 360, 390, and 420 min into Exetainer tubes (Labco Ltd., High Wycombe, Bucks, U.K.) for measurement of 13CO2 enrichment.

FA and Isotopic Enrichment

To determine the specific FA composition and isotopic enrichment, total lipids were extracted from plasma and lipoproteins and FA methyl esters (FAMEs) prepared (19,23). The FA compositions (µmol/100 µmol total FA) in these fractions were determined by gas chromatography (GC), and palmitate concentrations calculated (14).

[U13C]palmitate enrichments were measured in plasma NEFA, TG, Sf >400 (chylomicron-TG), Sf 20-400–TG and VLDL-TG FAMEs derivatives using a Δ Plus XP GC-combustion isotope ratio mass spectrometer (Thermo Electron, Bremen, Germany) (24). The tracer-to-tracee ratio (TTR) of a baseline measurement before administration of [U13C]palmitate was subtracted from the TTR of each sample to account for natural abundance. The TTRs for [U13C]palmitate were multiplied by the corresponding palmitate concentrations to give plasma and lipoprotein tracer concentrations (25).

The 13C-to-12C ratios in breath samples and the relative rate of whole-body meal-derived FA oxidation were calculated, as previously described (24). The rate of expiration of 13CO2 in breath was calculated by multiplying Vco2 (mmol/min) by the TTR of the 13CO2-to-12CO2 ratio (24). To allow for sequestration of label into the bicarbonate pool, a dietary acetate recovery factor of 51% was applied (26). The data were corrected for lean mass (determined by DEXA) to account for individual differences between the NI and HI groups. Hepatic ketone body production was assessed by measuring the isotopic enrichment from [U13C]palmitate in 3OHB in deproteinized plasma (27).

Fasting and postprandial hepatic DNL was assessed based on the incorporation of deuterium from 2H2O in plasma water (Finnigan GasBench II Thermo Fisher Scientific, Paisley, U.K.) into VLDL-TG palmitate using GC-mass spectrometry with monitoring ions with mass-to-charge ratios of 270 (M+0) and 271 (M+1) (28). For simplicity, DNL refers to the proportion of newly synthesized palmitate in VLDL-TG, and this represents the synthesis of FA from nonlipid precursors (29). To assess the partitioning of DNL palmitate into desaturation pathways, the ratio of [2H2]16:1n-7 to [2H2]16:0 in VLDL-TG was determined as a marker of hepatic stearoyl-CoA desaturase 1 (SCD1) activity (30).

Statistical Methods

HOMA of insulin resistance was calculated (31). The relative and absolute contribution of meal FA to VLDL-TG was calculated at the end of the study (time 420 min) (22).

Data were analyzed using SPSS 22 software (SPSS [UK] Ltd., Chertsey, U.K.). Data are presented as means ± SEM unless otherwise stated. Areas under the curve were calculated by the trapezoid method and have been divided by the relevant time period to give time-averaged values. For anthropometric data, comparisons between the groups were made using a general linear univariate model with sex as a covariate. All data sets, with time and group as factors, were used to investigate the change between groups over time for specific metabolites. Associations between variables were carried out using the Spearman rank correlation coefficient for the respective groups.

Participant Characteristics

NI subjects were slightly older, with marginally lower amounts of total, android, and visceral fat masses (P < 0.05), despite a similar BMI, than HI subjects (Table 1). Liver fat and glycogen content was similar between the groups (Table 1). The HI group had significantly higher (P < 0.05) fasting concentrations of plasma glucose and TG than the NI group (Table 1). Fasting plasma VLDL-TG concentrations tended (P = 0.07) to be higher in the HI compared with the NI group (Table 1).

Table 1

Characteristics of study participants

NI (n = 18)HI (n = 19)
Sex (n  
 Women  6  
 Men 12 16 
Age (years) 48 (39–59) 44 (27–48)* 
BMI (kg/m226.9 (21.2–29.9) 27.5 (22.8–29.7) 
Waist (cm) 92 (81–103) 96 (86–106) 
Total fat mass (kg) 24.9 (12.9–38.4) 24.5 (19.4–39.9)* 
Total lean mass (kg) 53.5 (37.7–65.5) 58.3 (39.1–72.5) 
Visceral fat (kg) 1.10 (0.05–1.98) 1.31 (0.57–2.39)* 
Android fat (kg) 2.3 (0.8–3.2) 2.5 (1.8–4.3)* 
Gynoid fat (kg) 3.7 (2.0–6.5) 3.6 (2.6–6.6) 
Android-to-gynoid ratio 0.67 (0.19–0.96) 0.66 (0.45–1.03) 
Liver fat (%) 3.4 (0.7–24.4) 3.4 (1.4–27.6) 
Liver glycogen (%) 0.3 (0.1–0.7) 0.3 (0.1–2.0) 
HOMA-insulin resistance 1.9 (1.2–2.4) 3.5 (2.5–6.1)*** 
Basal energy expenditure (kcal) 1,548 (1,262–2,015) 1,788 (1,448–2,077) 
Fasting plasma biochemical parameters  
 Glucose (mmol/L) 5.1 (4.1–5.5) 5.5 (4.7–6.4)** 
 Insulin (mU/L) 8.7 (5.2–10.9) 13.6 (11.3–25.9)*** 
 NEFA (µmol/L) 421 (165–690) 377 (172–661) 
 Total cholesterol (mmol/L) 5.4 (3.8–7.0) 5.5 (3.3–7.6) 
 HDL cholesterol (mmol/L) 1.1 (0.7–2.0) 1.0 (0.7–1.6) 
 Non-HDL cholesterol (mmol/L) 3.9 (2.3–5.9) 4.3 (2.6–6.4) 
 TG (µmol/L) 1,191 (401–3,933) 1,905 (329–4,085)* 
 VLDL-TG (µmol/L) 930 (150–2,614) 1,234 (169–1,704) 
 3OHB (µmol/L) 49 (21–168) 39 (21–107) 
Isotopic desaturation ratio in VLDL-TG 
 Fasting [2H2]16:1n-7–to–[2H2]16:0 0.45 ± 0.13 0.10 ± 0.03** 
 Postprandial [2H2]16:1n-7– to–[2H2]16:0 1.26 ± 0.82 0.20 ± 0.07** 
NI (n = 18)HI (n = 19)
Sex (n  
 Women  6  
 Men 12 16 
Age (years) 48 (39–59) 44 (27–48)* 
BMI (kg/m226.9 (21.2–29.9) 27.5 (22.8–29.7) 
Waist (cm) 92 (81–103) 96 (86–106) 
Total fat mass (kg) 24.9 (12.9–38.4) 24.5 (19.4–39.9)* 
Total lean mass (kg) 53.5 (37.7–65.5) 58.3 (39.1–72.5) 
Visceral fat (kg) 1.10 (0.05–1.98) 1.31 (0.57–2.39)* 
Android fat (kg) 2.3 (0.8–3.2) 2.5 (1.8–4.3)* 
Gynoid fat (kg) 3.7 (2.0–6.5) 3.6 (2.6–6.6) 
Android-to-gynoid ratio 0.67 (0.19–0.96) 0.66 (0.45–1.03) 
Liver fat (%) 3.4 (0.7–24.4) 3.4 (1.4–27.6) 
Liver glycogen (%) 0.3 (0.1–0.7) 0.3 (0.1–2.0) 
HOMA-insulin resistance 1.9 (1.2–2.4) 3.5 (2.5–6.1)*** 
Basal energy expenditure (kcal) 1,548 (1,262–2,015) 1,788 (1,448–2,077) 
Fasting plasma biochemical parameters  
 Glucose (mmol/L) 5.1 (4.1–5.5) 5.5 (4.7–6.4)** 
 Insulin (mU/L) 8.7 (5.2–10.9) 13.6 (11.3–25.9)*** 
 NEFA (µmol/L) 421 (165–690) 377 (172–661) 
 Total cholesterol (mmol/L) 5.4 (3.8–7.0) 5.5 (3.3–7.6) 
 HDL cholesterol (mmol/L) 1.1 (0.7–2.0) 1.0 (0.7–1.6) 
 Non-HDL cholesterol (mmol/L) 3.9 (2.3–5.9) 4.3 (2.6–6.4) 
 TG (µmol/L) 1,191 (401–3,933) 1,905 (329–4,085)* 
 VLDL-TG (µmol/L) 930 (150–2,614) 1,234 (169–1,704) 
 3OHB (µmol/L) 49 (21–168) 39 (21–107) 
Isotopic desaturation ratio in VLDL-TG 
 Fasting [2H2]16:1n-7–to–[2H2]16:0 0.45 ± 0.13 0.10 ± 0.03** 
 Postprandial [2H2]16:1n-7– to–[2H2]16:0 1.26 ± 0.82 0.20 ± 0.07** 

Data are expressed as median (range), mean ± SEM, or as indicated otherwise.

†Measured at 420 min.

*P < 0.05 NI vs. HI.

**P < 0.01 NI vs. HI.

***P < 0.001 NI vs. HI.

Postprandial Plasma Biochemical Parameters

Consumption of the mixed test meal exacerbated the differences in fasting plasma glucose and insulin concentrations, with significantly higher postprandial excursions occurring in the HI group (P < 0.05) compared with the HI group (Fig. 1A and B). Fasting differences in plasma TG concentrations were not maintained over the postprandial period, with no difference between the groups (Fig. 1D). In line with the fasting data, there were no notable differences in the postprandial response in plasma NEFA or 3OHB concentrations (Fig. 1C and E). Whole-body RER tended (P = 0.07) to be higher in HI than in NI individuals in the fasting state but was significantly (P < 0.05) higher in HI than in NI subjects during the postprandial period, indicative of lower FA oxidation (Fig. 1F).

Figure 1

Plasma concentrations of glucose (effect of time P < 0.001, group P < 0.01) (A); insulin (P < 0.001 for effect of time, P < 0.001 for group, P < 0.01 for time-by-group interaction) (B); NEFAs ( P < 0.001 for effect of time) (C); TG (P < 0.001 for effect of time) (D); and 3OHB (P < 0.001 for effect of time) (E) in NI and HI subjects. F: The fasting (time 0) and postprandial (time 120 min) whole-body RER after a mixed test meal in NI and HI subjects. *P < 0.05 between groups.

Figure 1

Plasma concentrations of glucose (effect of time P < 0.001, group P < 0.01) (A); insulin (P < 0.001 for effect of time, P < 0.001 for group, P < 0.01 for time-by-group interaction) (B); NEFAs ( P < 0.001 for effect of time) (C); TG (P < 0.001 for effect of time) (D); and 3OHB (P < 0.001 for effect of time) (E) in NI and HI subjects. F: The fasting (time 0) and postprandial (time 120 min) whole-body RER after a mixed test meal in NI and HI subjects. *P < 0.05 between groups.

Close modal

Isotopic Enrichment of Plasma and Breath

Inclusion of [U13C]palmitate into the mixed test meal provided the opportunity to trace the fate of dietary FA. There was no difference in the appearance of [U13C]palmitate in plasma chylomicron-TG between the groups (Fig. 2A). After the consumption of the second meal (at 360 min) the amount of [U13C]palmitate (from the first meal) incorporated into chylomicron-TG at 420 min was similar between groups, suggesting no difference in the second meal effect. The appearance of [U13C]palmitate in the plasma NEFA pool was significantly higher (P < 0.05) in the NI compared with the HI group (Fig. 2B), but there was no difference between the groups in the appearance of [U13C] in VLDL-TG (Fig. 2C). We calculated the contribution of meal-derived FA to VLDL-TG at 420 min and found a significantly (P < 0.05) lower relative contribution in the HI compared with NI group (mean ± SEM: 11% ± 1 vs. 14% ± 1, P < 0.05); this difference disappeared when expressed as an absolute concentration. In the fasting state, NI individuals had a significantly (P < 0.05) lower relative contribution of DNL to VLDL-TG compared with HI individuals. The contribution of DNL to VLDL-TG increased over the postprandial period (P < 0.01) in both groups, with the difference observed in the fasting state between the groups becoming less obvious (P = 0.07) (Fig. 2D). We assessed the [2H2]16:1n-7–to–[2H2]16:0 ratio in VLDL-TG, as a marker of the desaturation of DNL palmitate and found it was significantly (P < 0.01) higher in NI compared with HI individuals in the fasting state and at the end of the postprandial period (420 min) (Table 1).

Figure 2

Postprandial enrichment of [13C]palmitate in plasma chylomicron-TG (P < 0.001 for effect of time) (A); plasma NEFAs (P < 0.001 for effect of time, P < 0.05 for group) (B); and plasma VLDL-TG (P < 0.001 for effect of time) (C). D: The relative contribution of newly synthesized palmitate (DNL) in plasma VLDL-TG (P < 0.001 for effect of time, P = 0.07 for group). E: The appearance of [13C] from dietary fat in plasma 3OHB (P < 0.001 for effect of time, P < 0.05 for group). F: The appearance of [13C] in breath CO2 (P < 0.001 for effect of time, P = 0.07 for group) after a mixed test meal in NI and HI subjects.

Figure 2

Postprandial enrichment of [13C]palmitate in plasma chylomicron-TG (P < 0.001 for effect of time) (A); plasma NEFAs (P < 0.001 for effect of time, P < 0.05 for group) (B); and plasma VLDL-TG (P < 0.001 for effect of time) (C). D: The relative contribution of newly synthesized palmitate (DNL) in plasma VLDL-TG (P < 0.001 for effect of time, P = 0.07 for group). E: The appearance of [13C] from dietary fat in plasma 3OHB (P < 0.001 for effect of time, P < 0.05 for group). F: The appearance of [13C] in breath CO2 (P < 0.001 for effect of time, P = 0.07 for group) after a mixed test meal in NI and HI subjects.

Close modal

We assessed dietary FA oxidation by measuring the incorporation of 13C (from dietary fat) in plasma 3OHB as a marker of hepatic FA oxidation and in breath CO2 as a marker of whole-body dietary FA oxidation. We found a significantly (P < 0.05) greater incorporation 13C into plasma 3OHB in NI compared with HI individuals during the postprandial period (P < 0.05) (Fig. 2E). In line with this and the difference in postprandial RER, the production of 13CO2 (per unit lean mass) tended (P = 0.07) to be higher in the NI group compared with the HI group (P = 0.05 for time-by-group interaction) (Fig. 2F).

To assess the effect of increased liver fat content on fasting and postprandial FA synthesis and partitioning, we compared 10 NI and 9 HI individuals with a liver fat content >3.4%, the median of groups. Fasting plasma insulin was significantly (P < 0.01) higher in the HI compared with the NI group, as were postprandial plasma insulin and glucose concentrations (Supplementary Table 1). The groups did not differ in the appearance of [13C] from the dietary fat into plasma chylomicron-TG, VLDL-TG, and 3OHB, or in fasting or postprandial hepatic DNL. Incorporation of [13C] into the plasma NEFA pool was higher (P < 0.05) in the NI compared with HI group (Supplementary Table 1).

Associations Between Plasma Insulin, Liver Fat, Hepatic FA Synthesis, and Oxidation

We found a positive association between fasting plasma insulin and liver fat content in the NI and HI groups (Fig. 3A). Fasting insulin concentrations were also positively associated with liver glycogen content, but only in the NI (rs = 0.61, P < 0.05) and not in the HI (rs = 0.24, P = NS) group (data not shown). When combined, we found a positive association between liver fat and glycogen content (rs = 0.38, P < 0.05, n = 35 [NI: rs = 0.35 and HI: rs = 0.39, P = NS for both; data not shown]). There was a significant positive association between fasting plasma insulin concentrations and fasting hepatic DNL in the HI but not the NI group (Fig. 3B). Robust inverse associations were found between fasting hepatic DNL and fasting plasma 3OHB concentrations for NI (rs = −0.65, P < 0.01) and for HI (rs = −0.54, P < 0.05) (data not shown).

Figure 3

A: Correlations between liver fat content (%) and fasting plasma insulin concentration (mU/L) in NI (rs = 0.51, P < 0.05) and HI (rs = 0.58, P < 0.01) subjects. B: The fasting relative contribution (%) of newly synthesized palmitate (DNL) in VLDL-TG and fasting plasma insulin concentrations (mU/L) in NI (rs = 0.20, P = NS) and HI (rs = 0.53, P < 0.05) subjects. C: The time-averaged areas under the curve (AUC) of the relative contribution (%) of newly synthesized palmitate (DNL) in VLDL-TG and the time-averaged AUC plasma concentration of VLDL-TG (µmol/L) in NI (rs = 0.56, P < 0.05) and HI (rs = 0.09, P = NS) subjects. D: The time-averaged AUC relative contribution (%) of newly synthesized palmitate (DNL) in VLDL-TG and the time-averaged AUC appearance of [13C] in plasma 3OHB (µmol/L) in NI (rs = −0.75, P < 0.001) and HI (rs = −0.14, P = NS) subjects.

Figure 3

A: Correlations between liver fat content (%) and fasting plasma insulin concentration (mU/L) in NI (rs = 0.51, P < 0.05) and HI (rs = 0.58, P < 0.01) subjects. B: The fasting relative contribution (%) of newly synthesized palmitate (DNL) in VLDL-TG and fasting plasma insulin concentrations (mU/L) in NI (rs = 0.20, P = NS) and HI (rs = 0.53, P < 0.05) subjects. C: The time-averaged areas under the curve (AUC) of the relative contribution (%) of newly synthesized palmitate (DNL) in VLDL-TG and the time-averaged AUC plasma concentration of VLDL-TG (µmol/L) in NI (rs = 0.56, P < 0.05) and HI (rs = 0.09, P = NS) subjects. D: The time-averaged AUC relative contribution (%) of newly synthesized palmitate (DNL) in VLDL-TG and the time-averaged AUC appearance of [13C] in plasma 3OHB (µmol/L) in NI (rs = −0.75, P < 0.001) and HI (rs = −0.14, P = NS) subjects.

Close modal

We observed a positive association between the postprandial response in plasma VLDL-TG concentrations and hepatic DNL in the NI (P < 0.05) but not the HI group (Fig. 3C). There was a robust inverse association between the postprandial response in hepatic DNL and the incorporation of 13C, representing recently ingested dietary fat, in plasma 3OHB in the NI group (P < 0.001), but this association was diminished in the HI group (Fig. 3D).

Hepatic steatosis is often accompanied by hepatic insulin resistance; whether hepatic steatosis causes insulin resistance or vice versa remains unclear (17). We defined individuals as HI on the basis of their fasting plasma insulin concentration (14). We found HI individuals had marginally more total and visceral fat than NI individuals but liver fat content was similar between the groups. Despite NI and HI individuals having a similar amount of liver fat, we observed profound differences in fasting plasma glucose, insulin, and TG concentrations. Fasting and postprandial hepatic DNL were notably higher in the HI group than in the NI group. The HI subjects had significantly lower dietary FA oxidation, and the difference between the groups was augmented in the postprandial state. These observations were not evident in NI and HI individuals with a liver fat content >3.4%. Our findings demonstrate that hepatic steatosis does not need to be present to induce changes in intrahepatic FA metabolism; HI induces changes in FA partitioning that would, if maintained over a period of time, lead to accumulation of liver fat.

Within the liver, insulin integrates carbohydrate and lipid metabolism where they are directed to storage as TG and glycogen. We measured liver fat and glycogen content and found no difference between the groups in either; we did find liver fat content was positively associated with liver glycogen content. Animal studies have suggested in insulin resistance, portal hyperinsulinemia drives FoxO inactivation, leading to a decrease in the hepatic glucose 6-phosphatase catalytic subunit–to–glucokinase ratio and increased hepatic DNL, TG, diacylglycerol, and glycogen content (32). Our findings of higher hepatic DNL in HI compared with NI individuals are in line with this concept. We found a positive association between fasting plasma insulin concentrations and fasting hepatic DNL in the HI group only. Enhanced DNL leads to an increase in newly formed TG that will reside within the liver or be exported within VLDL (7,8). Hepatic DNL was positively associated with VLDL-TG concentrations in the NI but not the HI group. It could be speculated that DNL FAs were preferentially channeled toward secretion in VLDL in the NI group and toward storage in the HI group. Animal work has suggested DNL FAs exit the liver immediately as VLDL-TG rather than being stored (33). Although evidence for this is sparse in humans (34,35), hepatic DNL has been positively associated with VLDL-TG production rates (11,12).

DNL has been proposed as a pathway for sustaining metabolic homeostasis, and although an energetically inefficient way to store excess energy, it is an important mechanism for glucose disposal (36). Despite subjects consuming two test meals, we did not observe a marked divergence in postprandial hepatic DNL between the groups. It is plausible that the pattern of hepatic DNL would notably differ between the groups if followed for longer, with the HI group having a greater lipogenic response to the second meal. The induction of hepatic DNL has been suggested to contribute toward insulin resistance (6); we cannot distinguish whether an increase in DNL caused insulin resistance or vice versa.

Enhanced DNL increases the production of long-chain saturated fatty acyl-CoAs (e.g., palmitoyl-CoA) (7,8). A potential fate of newly synthesized palmitoyl-CoA is partitioning toward desaturation by SCD1 (30). We measured the ratio of [2H2]16:1n-7 to [2H2]16:0 in VLDL-TG as a marker of SCD1 activity and found the ratio was significantly higher in the fasting and postprandial states in NI individuals than in HI individuals. It is plausible greater desaturation of newly formed palmitate to palmitoleate would prevent accumulation of intrahepatocellular palmitoyl-CoA. Evidence from animal and cellular studies (37,38) suggests that lipotoxicity arising from the accumulation of long-chain FA is specific to saturated FA, with increased accumulation causing cell dysfunction (9). Palmitoyl-CoA can be used for the synthesis of intracellular ceramide; saturated FA and ceramides have both been suggested to upregulate proinflammatory pathways and proinsulin resistance factors (6). The factors influencing the partitioning of newly synthesized palmitoyl-CoA toward specific metabolic pathways remain unclear.

The appearance of [13C]palmitate in the systemic NEFA pool, consistent with spillover from chylomicron-TG hydrolysis (39), was higher in the NI than in the HI group, despite no difference in systemic NEFA concentrations. This is consistent with our observation that adipose tissue FA trafficking was downregulated in abdominally obese HI men compared with lean NI men (15). The contribution of systemic NEFA to VLDL-TG production has been reported to be similar between insulin-sensitive and insulin-resistant individuals (14) and those with and without NAFLD (40,41).

Removal of FA within the liver occurs by secretion as TG in VLDL or via oxidation. Although we did not measure VLDL-TG production rates, others (42,43) have reported VLDL apoB and TG production rates are higher in obese, insulin-resistant individuals compared with lean, insulin-sensitive individuals. In contrast, acute induction of hyperinsulinemia in healthy insulin-sensitive men suppresses the total production rate of VLDL apoB and TG (44), even in the presence of excess NEFA concentrations (45). On the basis of these observations, it could be speculated that the HI individuals in the current study had a higher VLDL-TG production rate than the NI individuals. Others have reported individuals with NAFLD have a higher VLDL-TG secretion rate than those without (41,46). We did not observe a difference in the appearance of [U13C]palmitate (from dietary fat) in VLDL-TG between the groups; however, our findings demonstrate that β-oxidation occurs in a proportion of dietary-derived FA entering the liver and the acetyl-CoA liberated enters a pool that is used for ketogenesis; this occurred to a greater extent in NI than in HI individuals. We did not measure the 3OHB production rate; thus, the absolute contribution of dietary FA into the ketogenic pathway cannot be determined. Production of 13CO2 was also lower in HI compared with NI individuals.

In support of these differences, we found NI compared with HI individuals had a significantly lower fasting and postprandial whole-body RER, which was indicative of FA oxidation. We found a strong inverse association between postprandial hepatic DNL and the plasma [13C]3OHB in the NI group that was not evident in the HI group. The findings from the NI group clearly highlight a divergence in FA partitioning suggesting intracellular metabolism is being moved away from esterification toward oxidation. The switch in intracellular metabolism was not so evident in the HI group; it could be speculated that the lack of association between these pathways signals an attempt to dispose of excess intrahepatic glucose and FA.

Our study has some limitations. Although subjects consumed two test meals, peak hepatic DNL occurs ∼4–5 h after consumption of a second meal (47) and was not achieved due to the short duration of our study. We did not determine the VLDL-TG, apoB, or DNL production rate; therefore, quantitative differences in the contribution of dietary and DNL FA to VLDL-TG production cannot be determined. The production rate from dietary fat and DNL to VLDL-TG has been reported to be 0.46 µmol/min and 0.78 µmol/min in individuals without NAFLD and 0.56 µmol/min and 2.57 µmol/min in individuals with NAFLD (41). In contrast, the absolute contribution of dietary fat to VLDL-TG was notably higher than the contribution from DNL when healthy men were given a liquid formula (32% fat) via duodenal infusion over a period of 11 h (48), demonstrating the contribution of dietary fat to VLDL-TG production will be dependent on the amount and frequency of consumption.

Insulin resistance is often associated with hepatic steatosis and is therefore suggested to have a central role in the development of hepatic steatosis (49); however, whether insulin resistance causes the development of steatosis or vice versa (17) remains unclear. Our data demonstrate that notable differences in hepatic FA metabolism are evident between NI and HI individuals across a spectrum of liver fat contents. It is plausible that if maintained over a period of time or further augmented, the alterations in intrahepatic FA synthesis and partitioning reported here may lead to net liver fat accumulation.

Acknowledgments. The authors thank Louise Dennis and Rachel Craven-Todd from the Clinical Research Unit at the Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM) for excellent nursing provision, Costas Christodoulides, Jeremy Tomlinson, and Jonathon Hazlehurst (OCDEM) for medical cover, Marje Gilbert (OCDEM) for technical assistance, Sandy Humphreys (OCDEM) for helpful statistical advice and technical assistance, and Ross Milne (Ottawa Heart Institute) for antibodies. The authors thank the volunteers from the Oxford BioBank, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, for their participation. The Oxford BioBank (www.oxfordbiobank.org.uk) is also part of the NIHR National BioResource, which supported the recalling process of the volunteers.

Funding. This study was funded by the British Heart Foundation (FS/11/18/28633 to L.H.), the Henning and Johan Throne-Holst Foundation (C.P.), and NIHR Oxford Biomedical Research Centre (F.K.).

Duality of Interest. No potential conflicts of interest relevant to this article were reported.

Author Contributions. C.P., M.P., R.B., C.A.M., and L.H. conducted the study. C.P., M.P., R.B., C.A.M., and L.H. carried out sample and data analyses. C.P., M.P., R.B., S.N., F.K., and L.H. contributed to data analysis and wrote the manuscript. S.N. and F.K. reviewed and edited the manuscript. L.H. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

1.
Musso
G
,
Cassader
M
,
De Michieli
F
,
Rosina
F
,
Orlandi
F
,
Gambino
R
.
Nonalcoholic steatohepatitis versus steatosis: adipose tissue insulin resistance and dysfunctional response to fat ingestion predict liver injury and altered glucose and lipoprotein metabolism
.
Hepatology
2012
;
56
:
933
942
[PubMed]
2.
Chalasani
N
,
Younossi
Z
,
Lavine
JE
, et al.;
American Gastroenterological Association
;
American Association for the Study of Liver Diseases
;
American College of Gastroenterology
.
The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology
.
Gastroenterology
2012
;
142
:
1592
1609
[PubMed]
3.
Hodson
L
,
Frayn
KN
.
Hepatic fatty acid partitioning
.
Curr Opin Lipidol
2011
;
22
:
216
224
[PubMed]
4.
Brown
MS
,
Goldstein
JL
.
Selective versus total insulin resistance: a pathogenic paradox
.
Cell Metab
2008
;
7
:
95
96
[PubMed]
5.
Wu
X
,
Chen
K
,
Williams
KJ
.
The role of pathway-selective insulin resistance and responsiveness in diabetic dyslipoproteinemia
.
Curr Opin Lipidol
2012
;
23
:
334
344
[PubMed]
6.
Zammit
VA
.
Hepatic triacylglycerol synthesis and secretion: DGAT2 as the link between glycaemia and triglyceridaemia
.
Biochem J
2013
;
451
:
1
12
[PubMed]
7.
Aarsland
A
,
Wolfe
RR
.
Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men
.
J Lipid Res
1998
;
39
:
1280
1286
[PubMed]
8.
Sahini
N
,
Borlak
J
.
Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes
.
Prog Lipid Res
2014
;
54
:
86
112
[PubMed]
9.
Leamy
AK
,
Egnatchik
RA
,
Shiota
M
, et al
.
Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells
.
J Lipid Res
2014
;
55
:
1478
1488
[PubMed]
10.
McGarry
JD
,
Mannaerts
GP
,
Foster
DW
.
A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis
.
J Clin Invest
1977
;
60
:
265
270
[PubMed]
11.
Hodson
L
,
Banerjee
R
,
Rial
B
, et al
.
Menopausal status and abdominal obesity are significant determinants of hepatic lipid metabolism in women
.
J Am Heart Assoc
2015
;
4
:
e002258
[PubMed]
12.
Matikainen
N
,
Adiels
M
,
Söderlund
S
, et al
.
Hepatic lipogenesis and a marker of hepatic lipid oxidation, predict postprandial responses of triglyceride-rich lipoproteins
.
Obesity (Silver Spring)
2014
;
22
:
1854
1859
[PubMed]
13.
Karpe
F
,
Dickmann
JR
,
Frayn
KN
.
Fatty acids, obesity, and insulin resistance: time for a reevaluation
.
Diabetes
2011
;
60
:
2441
2449
[PubMed]
14.
Hodson
L
,
Bickerton
AS
,
McQuaid
SE
, et al
.
The contribution of splanchnic fat to VLDL triglyceride is greater in insulin-resistant than insulin-sensitive men and women: studies in the postprandial state
.
Diabetes
2007
;
56
:
2433
2441
[PubMed]
15.
McQuaid
SE
,
Hodson
L
,
Neville
MJ
, et al
.
Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition
?
Diabetes
2011
;
60
:
47
55
[PubMed]
16.
Miles
JM
,
Park
YS
,
Walewicz
D
, et al
.
Systemic and forearm triglyceride metabolism: fate of lipoprotein lipase-generated glycerol and free fatty acids
.
Diabetes
2004
;
53
:
521
527
[PubMed]
17.
Farese
RV
 Jr
,
Zechner
R
,
Newgard
CB
,
Walther
TC
.
The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance
.
Cell Metab
2012
;
15
:
570
573
[PubMed]
18.
Tan
GD
,
Neville
MJ
,
Liverani
E
, et al
.
The in vivo effects of the Pro12Ala PPARgamma2 polymorphism on adipose tissue NEFA metabolism: the first use of the Oxford Biobank
.
Diabetologia
2006
;
49
:
158
168
[PubMed]
19.
Pramfalk
C
,
Pavlides
M
,
Banerjee
R
, et al
.
Sex-specific differences in hepatic fat oxidation and synthesis may explain the higher propensity for NAFLD in men
.
J Clin Endocrinol Metab
2015
;
100
:
4425
4433
[PubMed]
20.
Banerjee
R
,
Pavlides
M
,
Tunnicliffe
EM
, et al
.
Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease
.
J Hepatol
2014
;
60
:
69
77
[PubMed]
21.
Pinnick
KE
,
Nicholson
G
,
Manolopoulos
KN
, et al.;
MolPAGE Consortium
.
Distinct developmental profile of lower-body adipose tissue defines resistance against obesity-associated metabolic complications
.
Diabetes
2014
;
63
:
3785
3797
[PubMed]
22.
Hodson
L
,
McQuaid
SE
,
Karpe
F
,
Frayn
KN
,
Fielding
BA
.
Differences in partitioning of meal fatty acids into blood lipid fractions: a comparison of linoleate, oleate, and palmitate
.
Am J Physiol Endocrinol Metab
2009
;
296
:
E64
E71
[PubMed]
23.
Heath
RB
,
Karpe
F
,
Milne
RW
,
Burdge
GC
,
Wootton
SA
,
Frayn
KN
.
Selective partitioning of dietary fatty acids into the VLDL TG pool in the early postprandial period
.
J Lipid Res
2003
;
44
:
2065
2072
[PubMed]
24.
Chong
MF
,
Fielding
BA
,
Frayn
KN
.
Mechanisms for the acute effect of fructose on postprandial lipemia
.
Am J Clin Nutr
2007
;
85
:
1511
1520
[PubMed]
25.
Hodson
L
,
McQuaid
SE
,
Humphreys
SM
, et al
.
Greater dietary fat oxidation in obese compared with lean men: an adaptive mechanism to prevent liver fat accumulation
?
Am J Physiol Endocrinol Metab
2010
;
299
:
E584
E592
[PubMed]
26.
Bergouignan
A
,
Schoeller
DA
,
Votruba
S
,
Simon
C
,
Blanc
S
.
The acetate recovery factor to correct tracer-derived dietary fat oxidation in humans
.
Am J Physiol Endocrinol Metab
2008
;
294
:
E645
E653
[PubMed]
27.
Marinou
K
,
Adiels
M
,
Hodson
L
,
Frayn
KN
,
Karpe
F
,
Fielding
BA
.
Young women partition fatty acids towards ketone body production rather than VLDL-TAG synthesis, compared with young men
.
Br J Nutr
2011
;
105
:
857
865
[PubMed]
28.
Semple
RK
,
Sleigh
A
,
Murgatroyd
PR
, et al
.
Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis
.
J Clin Invest
2009
;
119
:
315
322
[PubMed]
29.
Moore
JB
,
Gunn
PJ
,
Fielding
BA
.
The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease
.
Nutrients
2014
;
6
:
5679
5703
[PubMed]
30.
Hodson
L
,
Fielding
BA
.
Stearoyl-CoA desaturase: rogue or innocent bystander
?
Prog Lipid Res
2013
;
52
:
15
42
[PubMed]
31.
Matthews
DR
,
Hosker
JP
,
Rudenski
AS
,
Naylor
BA
,
Treacher
DF
,
Turner
RC
.
Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man
.
Diabetologia
1985
;
28
:
412
419
[PubMed]
32.
Haeusler
RA
,
Hartil
K
,
Vaitheesvaran
B
, et al
.
Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors
.
Nat Commun
2014
;
5
:
5190
[PubMed]
33.
Duerden
JM
,
Gibbons
GF
.
Secretion and storage of newly synthesized hepatic triacylglycerol fatty acids in vivo in different nutritional states and in diabetes
.
Biochem J
1988
;
255
:
929
935
[PubMed]
34.
Vedala
A
,
Wang
W
,
Neese
RA
,
Christiansen
MP
,
Hellerstein
MK
.
Delayed secretory pathway contributions to VLDL-triglycerides from plasma NEFA, diet, and de novo lipogenesis in humans
.
J Lipid Res
2006
;
47
:
2562
2574
[PubMed]
35.
Hudgins
LC
,
Hellerstein
MK
,
Seidman
CE
,
Neese
RA
,
Tremaroli
JD
,
Hirsch
J
.
Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects
.
J Lipid Res
2000
;
41
:
595
604
[PubMed]
36.
Solinas
G
,
Borén
J
,
Dulloo
AG
.
De novo lipogenesis in metabolic homeostasis: more friend than foe
?
Mol Metab
2015
;
4
:
367
377
[PubMed]
37.
Field
CJ
,
Ryan
EA
,
Thomson
AB
,
Clandinin
MT
.
Diet fat composition alters membrane phospholipid composition, insulin binding, and glucose metabolism in adipocytes from control and diabetic animals
.
J Biol Chem
1990
;
265
:
11143
11150
[PubMed]
38.
Listenberger
LL
,
Han
X
,
Lewis
SE
, et al
.
Triglyceride accumulation protects against fatty acid-induced lipotoxicity
.
Proc Natl Acad Sci U S A
2003
;
100
:
3077
3082
[PubMed]
39.
Fielding
BA
,
Frayn
KN
.
Lipoprotein lipase and the disposition of dietary fatty acids
.
Br J Nutr
1998
;
80
:
495
502
[PubMed]
40.
Fabbrini
E
,
Magkos
F
,
Mohammed
BS
, et al
.
Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity
.
Proc Natl Acad Sci U S A
2009
;
106
:
15430
15435
[PubMed]
41.
Lambert
JE
,
Ramos-Roman
MA
,
Browning
JD
,
Parks
EJ
.
Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease
.
Gastroenterology
2014
;
146
:
726
735
[PubMed]
42.
Mittendorfer
B
,
Patterson
BW
,
Klein
S
,
Sidossis
LS
.
VLDL-triglyceride kinetics during hyperglycemia-hyperinsulinemia: effects of sex and obesity
.
Am J Physiol Endocrinol Metab
2003
;
284
:
E708
E715
[PubMed]
43.
Shojaee-Moradie
F
,
Ma
Y
,
Lou
S
,
Hovorka
R
,
Umpleby
AM
.
Prandial hypertriglyceridemia in metabolic syndrome is due to an overproduction of both chylomicron and VLDL triacylglycerol
.
Diabetes
2013
;
62
:
4063
4069
[PubMed]
44.
Malmström
R
,
Packard
CJ
,
Caslake
M
, et al
.
Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects
.
Diabetes
1998
;
47
:
779
787
[PubMed]
45.
Lewis
GF
,
Uffelman
KD
,
Szeto
LW
,
Weller
B
,
Steiner
G
.
Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans
.
J Clin Invest
1995
;
95
:
158
166
[PubMed]
46.
Fabbrini
E
,
Mohammed
BS
,
Magkos
F
,
Korenblat
KM
,
Patterson
BW
,
Klein
S
.
Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease
.
Gastroenterology
2008
;
134
:
424
431
[PubMed]
47.
Timlin
MT
,
Parks
EJ
.
Temporal pattern of de novo lipogenesis in the postprandial state in healthy men
.
Am J Clin Nutr
2005
;
81
:
35
42
[PubMed]
48.
Barrows
BR
,
Parks
EJ
.
Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states
.
J Clin Endocrinol Metab
2006
;
91
:
1446
1452
[PubMed]
49.
Korenblat
KM
,
Fabbrini
E
,
Mohammed
BS
,
Klein
S
.
Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects
.
Gastroenterology
2008
;
134
:
1369
1375
[PubMed]

Supplementary data