Dysregulation of gene expression in islets from patients with type 2 diabetes (T2D) might be causally involved in the development of hyperglycemia, or it could develop as a consequence of hyperglycemia (i.e., glucotoxicity). To separate the genes that could be causally involved in pathogenesis from those likely to be secondary to hyperglycemia, we exposed islets from human donors to normal or high glucose concentrations for 24 h and analyzed gene expression. We compared these findings with gene expression in islets from donors with normal glucose tolerance and hyperglycemia (including T2D). The genes whose expression changed in the same direction after short-term glucose exposure, as in T2D, were considered most likely to be a consequence of hyperglycemia. Genes whose expression changed in hyperglycemia but not after short-term glucose exposure, particularly those that also correlated with insulin secretion, were considered the strongest candidates for causal involvement in T2D. For example, ERO1LB, DOCK10, IGSF11, and PRR14L were downregulated in donors with hyperglycemia and correlated positively with insulin secretion, suggesting a protective role, whereas TMEM132C was upregulated in hyperglycemia and correlated negatively with insulin secretion, suggesting a potential pathogenic role. This study provides a catalog of gene expression changes in human pancreatic islets after exposure to glucose.

The function of pancreatic islets is critical for maintaining glucose homeostasis, and dynamic changes of gene expression is part of the islets’ response to blood glucose changes. In patients with type 2 diabetes (T2D), islet function declines progressively. Although the initial pathogenic trigger of impaired β-cell function is still unknown, elevated glucose levels are known to further aggravate β-cell function, a condition referred to as glucotoxicity, which can stimulate apoptosis and lead to reduced β-cell mass (15). Prolonged exposure to hyperglycemia also can induce endoplasmic reticulum (ER) stress and production of reactive oxygen species (6), which can further impair islet function and thereby the ability of islets to secrete the insulin needed to meet the increased demands imposed by insulin resistance and obesity (7). Although these changes are likely to contribute to deterioration of islet function in patients with manifest disease, they are less likely to explain the development of T2D in individuals with normoglycemia.

In previous studies, we analyzed the gene expression profile in individuals with chronically elevated glucose as measured by elevated HbA1c levels (8,9). However, these studies could not demonstrate whether the changes in gene expression are the cause or the consequence of hyperglycemia. One way to address this question is to compare gene expression in islets chronically exposed to hyperglycemia (prediabetes or diabetes) with gene expression changes after short-term exposure to hyperglycemia, with the assumption that gene expression changes seen in islets from patients with T2D but not after short-term hyperglycemia are the cause rather than the consequence of hyperglycemia (i.e., contributing to the pathogenesis of T2D). Thus, we performed RNA sequencing of human islets incubated at physiological (5.5 mmol/L) and high (18.9 mmol/L) glucose concentrations and compared the glucose-regulated genes with the gene expression profile seen in islets from hyperglycemic donors (8).

Donors and Islet Culture

Human islets of Langerhans were obtained from the Human Tissue Laboratory (Lund University), which is funded by the Excellence Of Diabetes Research in Sweden (EXODIAB) network (www.exodiab.se/home) in collaboration with The Nordic Network for Clinical Islet Transplantation Program (www.nordicislets.org). All islet donors had given consent for donation of organs for medical research, and the procedures were approved by the ethics committee at Lund University (Malmö, Sweden; permit number 2011263). The islets were prepared from cadaver donors by using enzymatic digestion and density gradient separation. Islet preparation purity and count were determined as described previously (10). Between 3,000 and 5,000 islets each from 45 donors were divided into two pools that were incubated for 24 h in CMRL 1066 medium (ICN Biomedicals) containing 5.5 mmol/L or 18.9 mmol/L glucose at 37°C. The study design is described in Fig. 1A, and the clinical characteristics of the donors can be found in Supplementary Table 1. RNA from the islets was extracted by using the miRNeasy Mini Kit (QIAGEN). RNA quantity and integrity was assessed with an ND-1000 spectrophotometer (NanoDrop) and on a 2100 Bioanalyzer or a 2200 TapeStation instrument (Agilent Technologies).

Figure 1

General study design. A: Islets from human cadaver donors (81 with normoglycemia [NG] and 35 with hyperglycemia [HG]) were isolated for transcriptome sequencing. Islets from 45 of these donors also were divided into two pools that were incubated in normal or high glucose for 24 h before differential expression analysis. B: The number of genes whose expression differed between islets from donors with NGT (n = 81) and AGT (19 with HG and 16 with T2D) and the number of genes whose expression changed after exposure to high glucose for 24 h in 31 islets from donors with NG and 14 with HG.

Figure 1

General study design. A: Islets from human cadaver donors (81 with normoglycemia [NG] and 35 with hyperglycemia [HG]) were isolated for transcriptome sequencing. Islets from 45 of these donors also were divided into two pools that were incubated in normal or high glucose for 24 h before differential expression analysis. B: The number of genes whose expression differed between islets from donors with NGT (n = 81) and AGT (19 with HG and 16 with T2D) and the number of genes whose expression changed after exposure to high glucose for 24 h in 31 islets from donors with NG and 14 with HG.

Close modal

Sample Preparation and Sequencing

With RNA sequencing, we performed a truly global analysis without a priori assumptions (11). A total of 1-μg high-quality RNA (RNA integrity number ≥8) was used as input for the TruSeq RNA Library Preparation Kit (Illumina). The resulting libraries were quality controlled on a 2200 TapeStation instrument before sequencing on a HiSeq 2000 system (Illumina) for an average depth of 32.4 mol/L paired-end reads (2 × 100 base pairs).

Insulin Secretion

Insulin secretion capacity of the islet preparations was evaluated by stimulatory index (SI). Twenty handpicked islets were perifused with low glucose (1.67 mmol/L) for 42 min, high glucose (20 mmol/L) for 48 min, and then low glucose again. Fractions were collected at 6-min intervals, and the secreted insulin was measured by ELISA. SI was defined as the ratio between the areas under the curve calculated for the low and high glucose concentrations (12). SI was used for all estimates of insulin secretion in the in vitro experiments.

Apoptosis and Cell Viability Assay

To test the effect of high glucose incubation for 24 h on islet viability and apoptosis, we incubated islets from three donors in normal and high glucose for 24 h as described above. More details can be found in the Supplementary Data.

Analysis of RNA Sequencing Data

The data were aligned to hg19 with STAR (Spliced Transcripts Alignment to Reference) (13) by using the GENCODE (Encyclopedia of Genes and Gene Variants) (14) v20 gene annotation to guide the alignment, and featureCounts (15) was used to count the number of reads aligned to the genes. Samples with <10 million counts and genes with <2 counts per million (CPM) in ≥10 samples were excluded from further analysis. The raw counts were transformed to log2 CPM, and the mean-variance trend was identified by using mean-variance modeling at the observational level (voom) (16) to allow for linear modeling after batch correction with ComBat (17). Differential expression was analyzed by using the paired data for 31 pairs of normoglycemic donor islets (HbA1c ≤6% [42 mmol/mol]) and 14 pairs of hyperglycemic donor islets (HbA1c >6% [42 mmol/mol]) separately by fitting a linear model with linear models for microarray and RNA sequencing data (limma) (18). To exclude that the number of genes responding to glucose was not due to differences in group size, we permuted 14 normoglycemic samples 1,000 times and calculated the mean number of changed genes by using the R function sample (19).

Linear modeling also was used to analyze differential gene expression (adjusted for age, sex, and days in culture) in untreated islets from 81 donors with normoglycemia (HbA1c <6% [42 mmol/mol]), 19 donors with hyperglycemia (HbA1c <6.5% [48 mmol/mol]), and 16 donors with T2D (HbA1c ≥6.5% [48 mmol/mol]), including the samples in the glucose-treated data set and overlapping a previous study by us (8). The HbA1c cutoffs for the groups were chosen to reflect the increased risk seen in individuals with HbA1c 6.0–6.5% and to follow the recommendations by the International Expert Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes (20).

The Effect of Coding Variants on In Vivo Insulin Secretion

To test the effect of gene expression on insulin secretion in vivo in humans, we used exome genotype array data to find potential loss-of-function and gain-of-function variants in filtered genes. Genotypes with a frequency >5% from the human Infinium Exome-24 v1.1 array (Illumina) were obtained from the Prevalence, Prediction and Prevention-Botnia study (21), and association with corrected insulin response (CIR) was performed, adjusted for age, sex, and BMI, in 3,720 samples; unadjusted P <0.05 was considered nominally significant. The single nucleotide polymorphisms (SNPs) in coding parts of the gene were considered as potential loss-of-function/gain-of-function variants.

Expression Quantitative Trait Loci Analysis in the Human Islets

Islet expression quantitative trait loci (eQTLs) were used to investigate genetic findings from the RNA sequencing experiments. More details can be found in the Supplementary Data and Supplementary Table 2.

Expression Changes in Response to Chronic Hyperglycemia in Human Islets

The aim of the project was to identify genes whose expression was altered in islets from donors with hyperglycemia but not changed by exposure to acute hyperglycemia or whose expression was altered in the opposite direction, assuming that such genes are more likely to be a cause than a consequence of hyperglycemia and thus involved in the pathogenesis of impaired insulin secretion leading to T2D. Altogether, expression of 717 genes (Fig. 1B and Supplementary Table 3) differed among donors with normoglycemia (HbA1c <6%), hyperglycemia (HbA1c ≥6% or <6.5%), and T2D (HbA1c ≥6.5%) islets at a false discovery rate (FDR) of 5%. Of them, 392 were not affected by acute glucose exposure (see below and Supplementary Tables 4 and 5).

Expression Changes in Response to Short-term Hyperglycemia in Human Islets

Islets from 45 human cadaver donors (31 normoglycemic and 14 hyperglycemic) were incubated at normal (5.5 mmol/L) or high glucose (18.9 mmol/L) concentrations for 24 h (Fig. 1A). RNA sequencing yielded an average 32.4 million paired-end reads per sample. A total of 15,958 genes were identified as expressed (defined as >2 CPM in >10 samples), corresponding to 27% of the genes in the GENCODE v20 gene annotation and 70% of the protein coding genes (n = 13,999). Incubation of islets from the 31 donors with normoglycemia (HbA1c ≤6%) in high glucose resulted in up- or downregulation (FDR-corrected P value [q] < 0.05) of 4,658 genes (Supplementary Table 6 and Fig. 1B). Information on the top 10 genes whose expression increased or decreased after short-term hyperglycemia is provided in Fig. 2. In islets from donors with hyperglycemia (HbA1c >6%), expression of 107 genes changed in response to exposure to glucose (Fig. 1B and Supplementary Table 7), which is far less than the 4,658 genes whose expression changed in normoglycemic islets. Part of this finding could be explained by differences in the number of donors (n = 31 vs. 14). However, after permuting 14 normoglycemic islets 1,000 times by using the sample package in R (19), the median number of differentially expressed genes was 501 (interquartile range 499) and significantly higher than that of donors with hyperglycemia (501 vs. 107; P = 0.04), demonstrating the unresponsiveness to glucose of islets from donors with hyperglycemia (Supplementary Fig. 1). Of these 107 genes, only 18 were affected by acute glucose in islets from donors with hyperglycemia (Supplementary Table 8).

Figure 2

Genes regulated by acute glucose exposure in human islets. The top 10 genes that are upregulated (A) or downregulated (B) in islets treated with high glucose (18.9 mmol/L) vs. normal glucose (5.5 mmol/L) for 24 h. Data are mean values, with bars showing minimum–maximum values. ***q < 0.001.

Figure 2

Genes regulated by acute glucose exposure in human islets. The top 10 genes that are upregulated (A) or downregulated (B) in islets treated with high glucose (18.9 mmol/L) vs. normal glucose (5.5 mmol/L) for 24 h. Data are mean values, with bars showing minimum–maximum values. ***q < 0.001.

Close modal

To ensure that the gene expression changes we observed in the islets after glucose incubation is not due to differences in cell viability and/or cell numbers, we tested the effect of high glucose incubation on islet function by measuring apoptosis and cell viability. Islets from four normoglycemic islets were incubated for 24 h at a high (18.9 mmol/L) or normal (5.5 mmol/L) glucose concentration. Neither apoptosis (n = 3; P = 0.20) (Supplementary Fig. 2B) nor the number of viable cells (n = 3; P = 0.46) (Supplementary Fig. 2C) was significantly affected by high glucose incubation for 24 h. The glucose-stimulated insulin secretion is affected already after 24 h of preincubation in high glucose, with increased basal insulin secretion (n = 4; P = 0.01) (Supplementary Fig. 2A).

Genes Whose Expression Was Unaffected by Acute Hyperglycemia but Correlated With Insulin Secretion

To identify genes possibly involved in T2D pathogenesis, we screened for genes whose expression was unaffected by acute hyperglycemia, correlated negatively with insulin secretion, and showed increased expression in donors with hyperglycemia compared with donors with normoglycemia (or vice versa if protective). Expression of 392 genes differed between the donor groups (FDR <0.05) (Supplementary Tables 4 and 5) and was not affected by acute glucose exposure in the same direction. Of them, 92 genes correlated with insulin secretion (Table 1 and Fig. 3).

Table 1

Genes possibly involved in T2D pathogenesis

Acute glucose
T2D, HG vs. NGT
Insulin secretion
Gene IDHGNC symbolAveExpr (log2CPM)log2FCq valueAveExpr (log2CPM)Regression coefficient βq valuerP value
ENSG00000186832 KRT16 — — — −0.16 0.83 3.41E-02 −0.19 4.68E-02 
ENSG00000124212 PTGIS — — — −0.06 0.73 2.28E-02 −0.20 3.02E-02 
ENSG00000101213 PTK6 — — — 0.00 0.55 1.91E-02 −0.21 2.99E-02 
ENSG00000154764 WNT7A — — — 1.17 0.48 3.57E-02 −0.24 9.56E-03 
ENSG00000101134 DOK5 — — — 1.32 0.45 2.03E-02 −0.20 3.17E-02 
ENSG00000160183 TMPRSS3 — — — 2.57 0.44 4.43E-02 −0.29 2.24E-03 
ENSG00000140285 FGF7 — — — 3.00 0.43 4.29E-02 −0.23 1.69E-02 
ENSG00000141497 ZMYND15 — — — −0.14 0.43 3.15E-02 −0.26 4.77E-03 
ENSG00000181234 TMEM132C — — — 2.23 0.40 1.65E-02 −0.23 1.41E-02 
ENSG00000101276 SLC52A3 — — — 0.46 0.40 3.63E-02 −0.21 2.82E-02 
ENSG00000131981 LGALS3 — — — 5.91 0.37 3.24E-02 −0.22 1.99E-02 
ENSG00000007384 RHBDF1 — — — 3.28 0.35 3.87E-02 −0.20 3.31E-02 
ENSG00000124225 PMEPA1 — — — 7.82 0.31 3.38E-02 −0.23 1.37E-02 
ENSG00000051128 HOMER3 — — — 1.98 0.31 4.21E-02 −0.21 2.31E-02 
ENSG00000115641 FHL2 — — — 4.47 0.30 2.75E-02 −0.19 4.72E-02 
ENSG00000136732 GYPC — — — 3.33 0.30 4.54E-02 −0.19 4.82E-02 
ENSG00000135318 NT5E — — — 4.70 0.29 3.88E-02 −0.21 2.89E-02 
ENSG00000198053 SIRPA — — — 5.04 0.29 2.94E-02 −0.19 4.73E-02 
ENSG00000250742 — — — — 1.32 0.28 3.34E-02 −0.22 2.10E-02 
ENSG00000168994 PXDC1 — — — 3.89 0.25 4.97E-02 −0.19 4.64E-02 
ENSG00000139832 RAB20 — — — 4.16 0.24 3.59E-02 −0.26 6.32E-03 
ENSG00000145901 TNIP1 — — — 7.08 0.23 4.74E-02 −0.22 1.86E-02 
ENSG00000146278 PNRC1 — — — 6.49 0.20 2.91E-02 −0.23 1.45E-02 
ENSG00000198818 SFT2D1 — — — 4.83 0.20 2.56E-02 −0.25 8.36E-03 
ENSG00000241852 C8orf58 — — — 2.25 0.17 4.14E-02 −0.19 4.80E-02 
ENSG00000177879 AP3S1 — — — 5.27 0.14 3.84E-02 −0.21 2.52E-02 
ENSG00000265808 SEC22B 6.96 0.11 4.76E-02 6.85 −0.1 0.04 0.35 4.34E-02 
ENSG00000172943 PHF8 — — — 5.76 −0.10 2.58E-02 0.26 4.85E-03 
ENSG00000162852 CNST — — — 5.47 −0.11 3.12E-02 0.20 3.80E-02 
ENSG00000184708 EIF4ENIF1 — — — 4.81 −0.12 1.47E-02 0.19 4.70E-02 
ENSG00000197296 FITM2 5.61 0.14 9.11E-03 5.48 −0.12 0.03 0.40 2.02E-02 
ENSG00000171503 ETFDH — — — 5.62 −0.14 1.99E-02 0.19 4.49E-02 
ENSG00000183530 PRR14L — — — 6.39 −0.14 2.46E-02 0.24 1.26E-02 
ENSG00000064393 HIPK2 — — — 7.87 −0.15 4.58E-02 0.25 8.31E-03 
ENSG00000170145 SIK2 — — — 7.42 −0.16 2.17E-02 0.26 6.08E-03 
ENSG00000109654 TRIM2 — — — 6.79 −0.16 3.59E-02 0.19 4.12E-02 
ENSG00000135469 COQ10A — — — 3.81 −0.16 4.02E-02 0.19 4.77E-02 
ENSG00000159082 SYNJ1 — — — 4.96 −0.17 2.90E-02 0.19 4.18E-02 
ENSG00000102053 ZC3H12B — — — 1.90 −0.17 3.96E-02 0.19 4.91E-02 
ENSG00000117707 PROX1 — — — 5.70 −0.18 3.08E-02 0.19 4.53E-02 
ENSG00000139116 KIF21A — — — 6.67 −0.18 2.23E-02 0.26 6.51E-03 
ENSG00000272325 NUDT3 — — — 5.11 −0.19 1.50E-02 0.20 3.17E-02 
ENSG00000134982 APC — — — 6.76 −0.19 1.63E-02 0.25 8.74E-03 
ENSG00000102781 KATNAL1 — — — 5.16 −0.19 4.38E-02 0.19 4.93E-02 
ENSG00000198712 MT-CO2 — — — 11.86 −0.19 4.14E-02 0.24 1.18E-02 
ENSG00000165572 KBTBD6 — — — 4.92 −0.20 3.66E-02 0.24 1.17E-02 
ENSG00000154822 PLCL2 — — — 5.64 −0.20 4.34E-02 0.20 3.29E-02 
ENSG00000185920 PTCH1 — — — 4.55 −0.20 1.99E-02 0.28 2.45E-03 
ENSG00000132846 ZBED3 — — — 4.50 −0.20 1.50E-02 0.20 3.21E-02 
ENSG00000120696 KBTBD7 — — — 4.58 −0.22 3.94E-02 0.24 1.01E-02 
ENSG00000198300 PEG3 — — — 6.16 −0.23 4.75E-02 0.21 2.45E-02 
ENSG00000166206 GABRB3 — — — 7.10 −0.24 4.40E-02 0.21 2.71E-02 
ENSG00000119737 GPR75 — — — 2.23 −0.24 2.29E-02 0.24 1.22E-02 
ENSG00000177707 PVRL3 — — — 6.22 −0.24 2.54E-02 0.19 4.17E-02 
ENSG00000072858 SIDT1 — — — 2.70 −0.25 2.91E-02 0.21 2.96E-02 
ENSG00000091972 CD200 — — — 5.78 −0.25 4.93E-02 0.20 3.64E-02 
ENSG00000150526 MIA2 — — — 0.83 −0.25 3.40E-02 0.29 1.62E-03 
ENSG00000165548 TMEM63C — — — 6.09 −0.26 2.93E-02 0.26 5.21E-03 
ENSG00000198780 FAM169A — — — 4.28 −0.26 4.32E-02 0.19 4.27E-02 
ENSG00000144847 IGSF11 3.58 0.43 1.88E-05 3.28 −0.26 0.04 0.44 9.56E-03 
ENSG00000196440 ARMCX4 — — — 5.62 −0.28 2.54E-02 0.23 1.37E-02 
ENSG00000144290 SLC4A10 — — — 5.59 −0.28 4.94E-02 0.26 6.29E-03 
ENSG00000065320 NTN1 — — — 3.78 −0.29 3.26E-02 0.25 6.87E-03 
ENSG00000147488 ST18 — — — 6.05 −0.30 1.99E-02 0.23 1.47E-02 
ENSG00000171004 HS6ST2 — — — 3.35 −0.31 1.65E-02 0.20 3.17E-02 
ENSG00000185065 — — — — 0.42 −0.31 1.87E-02 0.19 4.13E-02 
ENSG00000224093 — — — — 2.31 −0.32 1.50E-02 0.26 5.36E-03 
ENSG00000151789 ZNF385D — — — 2.61 −0.32 3.57E-02 0.19 4.43E-02 
ENSG00000132938 MTUS2 — — — 4.80 −0.32 1.86E-02 0.25 7.65E-03 
ENSG00000135905 DOCK10 — — — 4.69 −0.33 1.20E-02 0.21 2.80E-02 
ENSG00000117069 ST6GALNAC5 — — — 3.41 −0.33 3.48E-02 0.19 4.22E-02 
ENSG00000250056 LINC01018 — — — 2.73 −0.34 3.61E-02 0.20 3.52E-02 
ENSG00000168032 ENTPD3 — — — 5.84 −0.35 2.90E-02 0.22 2.28E-02 
ENSG00000050438 SLC4A8 — — — 5.72 −0.35 1.56E-02 0.23 1.65E-02 
ENSG00000077279 DCX — — — 2.29 −0.35 2.18E-02 0.23 1.32E-02 
ENSG00000126733 DACH2 — — — 2.89 −0.35 1.53E-02 0.20 3.30E-02 
ENSG00000168824 — — — — 3.43 −0.36 2.58E-02 0.25 6.88E-03 
ENSG00000123612 ACVR1C — — — 4.58 −0.36 3.15E-02 0.21 2.89E-02 
ENSG00000086619 ERO1LB — — — 9.16 −0.37 1.81E-02 0.29 1.72E-03 
ENSG00000182836 PLCXD3 — — — 7.70 −0.37 8.88E-03 0.24 1.00E-02 
ENSG00000186197 EDARADD — — — 4.28 −0.37 9.52E-03 0.27 3.57E-03 
ENSG00000257951 — — — — 1.02 −0.37 1.58E-02 0.19 4.16E-02 
ENSG00000145569 FAM105A — — — 6.22 −0.38 1.60E-02 0.21 2.32E-02 
ENSG00000050030 KIAA2022 — — — 4.57 −0.41 3.66E-03 0.22 2.04E-02 
ENSG00000138622 HCN4 — — — 2.97 −0.42 1.85E-03 0.24 9.27E-03 
ENSG00000175175 PPM1E — — — 5.29 −0.44 5.29E-03 0.19 4.29E-02 
ENSG00000112164 GLP1R — — — 5.32 −0.48 7.98E-03 0.23 1.30E-02 
ENSG00000204091 TDRG1 — — — −0.49 −0.49 1.49E-02 0.19 4.14E-02 
ENSG00000247381 PDX1-AS1 — — — 2.11 −0.62 2.20E-02 0.19 4.72E-02 
ENSG00000116329 OPRD1 — — — −0.01 −0.65 4.71E-03 0.30 1.13E-03 
ENSG00000178919 FOXE1 — — — −0.20 −0.68 5.29E-03 0.31 9.15E-04 
ENSG00000151834 GABRA2 — — — 0.16 −1.22 2.72E-05 0.28 3.19E-03 
Acute glucose
T2D, HG vs. NGT
Insulin secretion
Gene IDHGNC symbolAveExpr (log2CPM)log2FCq valueAveExpr (log2CPM)Regression coefficient βq valuerP value
ENSG00000186832 KRT16 — — — −0.16 0.83 3.41E-02 −0.19 4.68E-02 
ENSG00000124212 PTGIS — — — −0.06 0.73 2.28E-02 −0.20 3.02E-02 
ENSG00000101213 PTK6 — — — 0.00 0.55 1.91E-02 −0.21 2.99E-02 
ENSG00000154764 WNT7A — — — 1.17 0.48 3.57E-02 −0.24 9.56E-03 
ENSG00000101134 DOK5 — — — 1.32 0.45 2.03E-02 −0.20 3.17E-02 
ENSG00000160183 TMPRSS3 — — — 2.57 0.44 4.43E-02 −0.29 2.24E-03 
ENSG00000140285 FGF7 — — — 3.00 0.43 4.29E-02 −0.23 1.69E-02 
ENSG00000141497 ZMYND15 — — — −0.14 0.43 3.15E-02 −0.26 4.77E-03 
ENSG00000181234 TMEM132C — — — 2.23 0.40 1.65E-02 −0.23 1.41E-02 
ENSG00000101276 SLC52A3 — — — 0.46 0.40 3.63E-02 −0.21 2.82E-02 
ENSG00000131981 LGALS3 — — — 5.91 0.37 3.24E-02 −0.22 1.99E-02 
ENSG00000007384 RHBDF1 — — — 3.28 0.35 3.87E-02 −0.20 3.31E-02 
ENSG00000124225 PMEPA1 — — — 7.82 0.31 3.38E-02 −0.23 1.37E-02 
ENSG00000051128 HOMER3 — — — 1.98 0.31 4.21E-02 −0.21 2.31E-02 
ENSG00000115641 FHL2 — — — 4.47 0.30 2.75E-02 −0.19 4.72E-02 
ENSG00000136732 GYPC — — — 3.33 0.30 4.54E-02 −0.19 4.82E-02 
ENSG00000135318 NT5E — — — 4.70 0.29 3.88E-02 −0.21 2.89E-02 
ENSG00000198053 SIRPA — — — 5.04 0.29 2.94E-02 −0.19 4.73E-02 
ENSG00000250742 — — — — 1.32 0.28 3.34E-02 −0.22 2.10E-02 
ENSG00000168994 PXDC1 — — — 3.89 0.25 4.97E-02 −0.19 4.64E-02 
ENSG00000139832 RAB20 — — — 4.16 0.24 3.59E-02 −0.26 6.32E-03 
ENSG00000145901 TNIP1 — — — 7.08 0.23 4.74E-02 −0.22 1.86E-02 
ENSG00000146278 PNRC1 — — — 6.49 0.20 2.91E-02 −0.23 1.45E-02 
ENSG00000198818 SFT2D1 — — — 4.83 0.20 2.56E-02 −0.25 8.36E-03 
ENSG00000241852 C8orf58 — — — 2.25 0.17 4.14E-02 −0.19 4.80E-02 
ENSG00000177879 AP3S1 — — — 5.27 0.14 3.84E-02 −0.21 2.52E-02 
ENSG00000265808 SEC22B 6.96 0.11 4.76E-02 6.85 −0.1 0.04 0.35 4.34E-02 
ENSG00000172943 PHF8 — — — 5.76 −0.10 2.58E-02 0.26 4.85E-03 
ENSG00000162852 CNST — — — 5.47 −0.11 3.12E-02 0.20 3.80E-02 
ENSG00000184708 EIF4ENIF1 — — — 4.81 −0.12 1.47E-02 0.19 4.70E-02 
ENSG00000197296 FITM2 5.61 0.14 9.11E-03 5.48 −0.12 0.03 0.40 2.02E-02 
ENSG00000171503 ETFDH — — — 5.62 −0.14 1.99E-02 0.19 4.49E-02 
ENSG00000183530 PRR14L — — — 6.39 −0.14 2.46E-02 0.24 1.26E-02 
ENSG00000064393 HIPK2 — — — 7.87 −0.15 4.58E-02 0.25 8.31E-03 
ENSG00000170145 SIK2 — — — 7.42 −0.16 2.17E-02 0.26 6.08E-03 
ENSG00000109654 TRIM2 — — — 6.79 −0.16 3.59E-02 0.19 4.12E-02 
ENSG00000135469 COQ10A — — — 3.81 −0.16 4.02E-02 0.19 4.77E-02 
ENSG00000159082 SYNJ1 — — — 4.96 −0.17 2.90E-02 0.19 4.18E-02 
ENSG00000102053 ZC3H12B — — — 1.90 −0.17 3.96E-02 0.19 4.91E-02 
ENSG00000117707 PROX1 — — — 5.70 −0.18 3.08E-02 0.19 4.53E-02 
ENSG00000139116 KIF21A — — — 6.67 −0.18 2.23E-02 0.26 6.51E-03 
ENSG00000272325 NUDT3 — — — 5.11 −0.19 1.50E-02 0.20 3.17E-02 
ENSG00000134982 APC — — — 6.76 −0.19 1.63E-02 0.25 8.74E-03 
ENSG00000102781 KATNAL1 — — — 5.16 −0.19 4.38E-02 0.19 4.93E-02 
ENSG00000198712 MT-CO2 — — — 11.86 −0.19 4.14E-02 0.24 1.18E-02 
ENSG00000165572 KBTBD6 — — — 4.92 −0.20 3.66E-02 0.24 1.17E-02 
ENSG00000154822 PLCL2 — — — 5.64 −0.20 4.34E-02 0.20 3.29E-02 
ENSG00000185920 PTCH1 — — — 4.55 −0.20 1.99E-02 0.28 2.45E-03 
ENSG00000132846 ZBED3 — — — 4.50 −0.20 1.50E-02 0.20 3.21E-02 
ENSG00000120696 KBTBD7 — — — 4.58 −0.22 3.94E-02 0.24 1.01E-02 
ENSG00000198300 PEG3 — — — 6.16 −0.23 4.75E-02 0.21 2.45E-02 
ENSG00000166206 GABRB3 — — — 7.10 −0.24 4.40E-02 0.21 2.71E-02 
ENSG00000119737 GPR75 — — — 2.23 −0.24 2.29E-02 0.24 1.22E-02 
ENSG00000177707 PVRL3 — — — 6.22 −0.24 2.54E-02 0.19 4.17E-02 
ENSG00000072858 SIDT1 — — — 2.70 −0.25 2.91E-02 0.21 2.96E-02 
ENSG00000091972 CD200 — — — 5.78 −0.25 4.93E-02 0.20 3.64E-02 
ENSG00000150526 MIA2 — — — 0.83 −0.25 3.40E-02 0.29 1.62E-03 
ENSG00000165548 TMEM63C — — — 6.09 −0.26 2.93E-02 0.26 5.21E-03 
ENSG00000198780 FAM169A — — — 4.28 −0.26 4.32E-02 0.19 4.27E-02 
ENSG00000144847 IGSF11 3.58 0.43 1.88E-05 3.28 −0.26 0.04 0.44 9.56E-03 
ENSG00000196440 ARMCX4 — — — 5.62 −0.28 2.54E-02 0.23 1.37E-02 
ENSG00000144290 SLC4A10 — — — 5.59 −0.28 4.94E-02 0.26 6.29E-03 
ENSG00000065320 NTN1 — — — 3.78 −0.29 3.26E-02 0.25 6.87E-03 
ENSG00000147488 ST18 — — — 6.05 −0.30 1.99E-02 0.23 1.47E-02 
ENSG00000171004 HS6ST2 — — — 3.35 −0.31 1.65E-02 0.20 3.17E-02 
ENSG00000185065 — — — — 0.42 −0.31 1.87E-02 0.19 4.13E-02 
ENSG00000224093 — — — — 2.31 −0.32 1.50E-02 0.26 5.36E-03 
ENSG00000151789 ZNF385D — — — 2.61 −0.32 3.57E-02 0.19 4.43E-02 
ENSG00000132938 MTUS2 — — — 4.80 −0.32 1.86E-02 0.25 7.65E-03 
ENSG00000135905 DOCK10 — — — 4.69 −0.33 1.20E-02 0.21 2.80E-02 
ENSG00000117069 ST6GALNAC5 — — — 3.41 −0.33 3.48E-02 0.19 4.22E-02 
ENSG00000250056 LINC01018 — — — 2.73 −0.34 3.61E-02 0.20 3.52E-02 
ENSG00000168032 ENTPD3 — — — 5.84 −0.35 2.90E-02 0.22 2.28E-02 
ENSG00000050438 SLC4A8 — — — 5.72 −0.35 1.56E-02 0.23 1.65E-02 
ENSG00000077279 DCX — — — 2.29 −0.35 2.18E-02 0.23 1.32E-02 
ENSG00000126733 DACH2 — — — 2.89 −0.35 1.53E-02 0.20 3.30E-02 
ENSG00000168824 — — — — 3.43 −0.36 2.58E-02 0.25 6.88E-03 
ENSG00000123612 ACVR1C — — — 4.58 −0.36 3.15E-02 0.21 2.89E-02 
ENSG00000086619 ERO1LB — — — 9.16 −0.37 1.81E-02 0.29 1.72E-03 
ENSG00000182836 PLCXD3 — — — 7.70 −0.37 8.88E-03 0.24 1.00E-02 
ENSG00000186197 EDARADD — — — 4.28 −0.37 9.52E-03 0.27 3.57E-03 
ENSG00000257951 — — — — 1.02 −0.37 1.58E-02 0.19 4.16E-02 
ENSG00000145569 FAM105A — — — 6.22 −0.38 1.60E-02 0.21 2.32E-02 
ENSG00000050030 KIAA2022 — — — 4.57 −0.41 3.66E-03 0.22 2.04E-02 
ENSG00000138622 HCN4 — — — 2.97 −0.42 1.85E-03 0.24 9.27E-03 
ENSG00000175175 PPM1E — — — 5.29 −0.44 5.29E-03 0.19 4.29E-02 
ENSG00000112164 GLP1R — — — 5.32 −0.48 7.98E-03 0.23 1.30E-02 
ENSG00000204091 TDRG1 — — — −0.49 −0.49 1.49E-02 0.19 4.14E-02 
ENSG00000247381 PDX1-AS1 — — — 2.11 −0.62 2.20E-02 0.19 4.72E-02 
ENSG00000116329 OPRD1 — — — −0.01 −0.65 4.71E-03 0.30 1.13E-03 
ENSG00000178919 FOXE1 — — — −0.20 −0.68 5.29E-03 0.31 9.15E-04 
ENSG00000151834 GABRA2 — — — 0.16 −1.22 2.72E-05 0.28 3.19E-03 

Expression of 92 genes that differed between islets from cadaver donors with NGT, HG, and T2D but did not change after exposure to short-term HG in human islets. The genes also show a correlation with insulin secretion (SI) in human islets. AveExpr, average expression; HG, hyperglycemia; HGNC, Human Genome Organisation Gene Nomenclature Committee.

Figure 3

Genes possibly involved in T2D pathogenesis. Ninety-two genes were uniquely differentially expressed in untreated islets from 81 donors with NGT (HbA1c <6%), 18 donors with hyperglycemia (HG) (HbA1c <6.5%), and 16 donors with T2D (HbA1c ≥6.5%) and correlated with insulin secretion (SI). A: Twenty-six potentially pathogenic genes were upregulated in AGT islets and negatively correlated with insulin secretion. B: Sixty-six genes were downregulated in islets from donors with HG and positively correlated with insulin secretion. The graphs show the correlation of the average expression of the respective genes in 115 islets vs. HbA1c and insulin secretion. C: Expression of the five genes that also had potential loss-of-function variants associated with in vivo insulin secretion in NGT, HG, and T2D. D: Correlation of the gene expression with in vitro insulin secretion (SI). Four genes (ERO1LB, DOCK10, PRR14L, and IGSF11) were downregulated in T2D, and TMEM132C was upregulated. Data are mean with minimum–maximum values.

Figure 3

Genes possibly involved in T2D pathogenesis. Ninety-two genes were uniquely differentially expressed in untreated islets from 81 donors with NGT (HbA1c <6%), 18 donors with hyperglycemia (HG) (HbA1c <6.5%), and 16 donors with T2D (HbA1c ≥6.5%) and correlated with insulin secretion (SI). A: Twenty-six potentially pathogenic genes were upregulated in AGT islets and negatively correlated with insulin secretion. B: Sixty-six genes were downregulated in islets from donors with HG and positively correlated with insulin secretion. The graphs show the correlation of the average expression of the respective genes in 115 islets vs. HbA1c and insulin secretion. C: Expression of the five genes that also had potential loss-of-function variants associated with in vivo insulin secretion in NGT, HG, and T2D. D: Correlation of the gene expression with in vitro insulin secretion (SI). Four genes (ERO1LB, DOCK10, PRR14L, and IGSF11) were downregulated in T2D, and TMEM132C was upregulated. Data are mean with minimum–maximum values.

Close modal

Noncoding genetic variants influencing gene expression are referred to as eQTLs and can be used to explore the effects of gene expression on a phenotype. If the variant was associated with the expression of a gene whose expression correlates with insulin secretion, we used that variant as a proxy for insulin secretion. For the eQTLs analysis, we used genome-wide association study (GWAS) genotype data in combination with RNA sequencing data from 191 donors. We identified one or more eQTLs in 16 of the 392 genes that differed between donors with normoglycemia and donors with hyperglycemia and was not affected by acute glucose exposure in the same direction, including the SID1 transmembrane family member 1 (SIDT1) and forkhead box E1 (FOXE1) genes; these variants also were nominally associated with SI in the islets. The same eQTLs in the SIDT1 gene were nominally associated (P < 0.05) with T2D in the DIAGRAM (Diabetes Genetics Replication and Meta-analysis) study (22) (Supplementary Table 9). An eQTL SNP in the rhomboid 5 homolog 1 gene (RHBDF1) was nominally associated with CIR.

To increase the likelihood that a gene would be involved in the pathogenesis of or protection from T2D, we searched for potential loss- or gain-of-function variants in the 92 genes whose expression correlated with SI and explored whether such variants would influence in vivo insulin secretion (CIR). Five genes (transmembrane protein 132C [TMEM132C], ERO1LB, dedicator of cytokinesis protein 10 [DOCK10], proline-rich 14-like protein [PRR14L], and IGSF11) (Fig. 3D and Supplementary Table 10) harbored variants, which were associated with CIR corrected for age, sex, and BMI. Expression of ERO1LB, DOCK10, PRR14L, and IGSF11 was positively correlated with insulin secretion and downregulated in donors with hyperglycemia and, thus, were potentially protective against T2D. For example, the expression of ERO1LB was lower in donors with hyperglycemia (β = −0.37, q = 0.02) and correlated positively with insulin secretion (Pearson r = 0.29; P = 0.002). A coding variant (with a possible effect on expression) in this gene was nominally associated with decreased CIR (rs2477599, allele T, β = −0.03; P = 0.03), suggesting that expression of ERO1LB is required for normal insulin secretion. In contrast, expression of TMEM132C was higher in donors with hyperglycemia (β = 0.40, q = 0.02) and correlated negatively with insulin secretion (Pearson r = −0.23; P = 0.01). A coding variant in TMEM132C was associated with impaired CIR (rs11059681, allele G, β = −0.03; P = 0.03), making it a potential candidate to contribute to the pathogenesis of T2D.

Are Genes in Established T2D Loci Affected by Acute Hyperglycemia?

To obtain some insight into the potential role of genes/loci previously reported to be associated with T2D or glycemic traits, we analyzed whether expression of 134 genes associated with T2D or glycemic traits was influenced by hyperglycemia and whether they harbored variants influencing expression (eQTLs) (2229). Expression of 21 genes harboring such variants (Supplementary Table 11) changed in response to short-term hyperglycemia, whereas expression of 7 genes differed between individuals with normal glucose tolerance (NGT) and abnormal glucose tolerance (AGT) (i.e., hyperglycemia [SLC2A2 (β = −0.66, q < 0.01), RASGRP1 (β = −0.38, q < 0.01), PDX1 (β = −0.33, q < 0.05), PCSK1 (β = −0.32, q < 0.05), ZBED3 (β = −0.20, q < 0.05), PROX1 (β = −0.18, q < 0.05), FTO (β = −0.12, q < 0.05)]). Expression of PROX1 and ZBED3 also correlated positively with SI (r = 0.19 [P < 0.05] and 0.20 [P < 0.05], respectively). The BCAR1 T2D-associated SNP rs7202877 was also an eQTL in the islets. The SNP was associated with SI (effect allele G, β = 1.87; P < 0.05) but was not an eQTL for the BCAR1 but for the pseudogene RP11-331F4.4. Another 13 T2D GWAS SNPs influenced expression of nearby genes (cis-eQTLs) whereof 3 influenced more than one gene (rs3132524, rs1167800, and rs3829109). Seven of these 13 eQTLs were not eQTLs for the gene suggested in the GWAS, such as rs1046896, which tags fructosamine 3 kinase–related protein (FN3KRP) (Table 2). The expression of FN3KRP was negatively correlated with SI (r = −0.19; P < 0.05). None of these eQTL genes were differentially expressed in islets from donors with hyperglycemia compared with islets from donors with normoglycemia, although expression of STARD10 was upregulated by acute glucose exposure (log2 fold change [log2FC] = 0.20, q < 0.05). The SNP rs10830963, which is one of the strongest eQTLs for the melatonin receptor 1B gene (MTNR1B) in human islets (30) was nominally associated with CIR (G allele, β = −0.11; P < 0.05). The same was seen for rs11257655 in the calcium/calmodulin-dependent protein kinase ID (CAMK1D) gene (T allele, β = −0.14; P < 0.01).

Table 2

Genome-wide–significant GWAS T2D/glycemic trait SNPs as eQTLs in human pancreatic islets

GWAS loci
eQTLs
LocusSNPTraitGWAS effect alleleeQTL geneq valueAllele changeDirectionGene annotation
ERAP2 rs1019503 2-h glucose ERAP2 1.75e-34 G>A protein_coding 
FN3K rs1046896 HbA1c FN3KRP 2.27e-07 C>T − protein_coding 
MTNR1B rs10830963 T2D, FBG, HbA1c, HOMA-B, CIR MTNR1B 4.73e-11 C>G protein_coding 
CDC123/ CAMK1D rs11257655 T2D CAMK1D 8.97e-09 C>T protein_coding 
ARAP1 rs11603334 T2D, FBG, FPG STARD10 1.58e-06 G>A protein_coding 
HIP1 rs1167800 FI STAG3L1, PMS2P3 0.001, 0.05 G>A −, − transcribed_unprocessed_
pseudogene 
ADCY5 rs11708067 T2D, FBG, 2-h glucose RP11-797D24.4 2.02e-05 A>G antisense 
UBE2E2 rs1496653 T2D UBE2E2 0.05 A>G − protein_coding 
POU5F1/ TCF19 rs3132524 T2D CDSN, HCG27 1.05e-05, 0.02 T>C −, + protein_coding 
GPSM1/ DNLZ rs3829109 T2D, FBG DNLZ, GPSM1,CARD9 0.0005, 0.03, 0.003 G>A −, −, − protein_coding 
FOXA2 rs6113722 FBG LINC00261 0.009 G>A − lincRNA 
BCAR1 rs7202877 T2D RP11-331F4.4 0.01 T>G − transcribed_unprocessed_
pseudogene 
SNX7 rs9727115 FPG SNX7 0.003 G>A − protein_coding 
GWAS loci
eQTLs
LocusSNPTraitGWAS effect alleleeQTL geneq valueAllele changeDirectionGene annotation
ERAP2 rs1019503 2-h glucose ERAP2 1.75e-34 G>A protein_coding 
FN3K rs1046896 HbA1c FN3KRP 2.27e-07 C>T − protein_coding 
MTNR1B rs10830963 T2D, FBG, HbA1c, HOMA-B, CIR MTNR1B 4.73e-11 C>G protein_coding 
CDC123/ CAMK1D rs11257655 T2D CAMK1D 8.97e-09 C>T protein_coding 
ARAP1 rs11603334 T2D, FBG, FPG STARD10 1.58e-06 G>A protein_coding 
HIP1 rs1167800 FI STAG3L1, PMS2P3 0.001, 0.05 G>A −, − transcribed_unprocessed_
pseudogene 
ADCY5 rs11708067 T2D, FBG, 2-h glucose RP11-797D24.4 2.02e-05 A>G antisense 
UBE2E2 rs1496653 T2D UBE2E2 0.05 A>G − protein_coding 
POU5F1/ TCF19 rs3132524 T2D CDSN, HCG27 1.05e-05, 0.02 T>C −, + protein_coding 
GPSM1/ DNLZ rs3829109 T2D, FBG DNLZ, GPSM1,CARD9 0.0005, 0.03, 0.003 G>A −, −, − protein_coding 
FOXA2 rs6113722 FBG LINC00261 0.009 G>A − lincRNA 
BCAR1 rs7202877 T2D RP11-331F4.4 0.01 T>G − transcribed_unprocessed_
pseudogene 
SNX7 rs9727115 FPG SNX7 0.003 G>A − protein_coding 

Thirteen of the 131 established T2D/glycemic trait loci (Supplementary Table 11) are eQTLs in the human islets. The eight genes marked in bold text are not the closest genes to the SNP. FBG, fasting blood glucose; FI, fasting serum insulin; FPG, fasting plasma glucose; HOMA-B, HOMA β-cell function; lincRNA, long intergenic noncoding RNA.

Changes in Gene Expression Attributed to Glucotoxicity

We assumed that similar changes in gene expression seen after acute and long-term (prediabetes and diabetes) glucose exposure could possibly be attributed to glucotoxicity. A total of 325 genes (46% of the genes changed in donors with hyperglycemia and T2D) had similar gene expression changes both after 24-h glucose exposure and in islets from donors with hyperglycemia (Supplementary Table 12). Of them, the expression of 73 genes correlated with SI (48 positively and 25 negatively), which is more than expected by chance (22% correlate with SI vs. 9% of genes in general; Fisher exact test P < 0.0001) (Fig. 4 and Table 3). The genes A-kinase anchoring protein 6 (AKAP6), GALNT2, and FERMT1 also harbored coding variants associated with CIR (Supplementary Table 13). Finally, expression of the SIPA1L2, HRK, TMED132D, MBP, and CPEB1 genes was also affected by acute glucose exposure in islets from donors with hyperglycemia; gene expression of TMEM132D and MBP correlated with SI (Supplementary Table 14). Of note, MBP had an eQTL SNP (rs1667903, effect allele C, β = −0.50, q < 0.05) that was associated with both SI and CIR (βSI = −1.52 [P < 0.05] and βCIR = 0.14 [P < 0.05]).

Figure 4

Potentially glucotoxic-sensitive genes. In total, 73 genes were differentially expressed in the AGT islets (hyperglycemia [HG]: HbA1c ≥6% or <6.5%; T2D: HbA1c ≥6.5%) compared with NGT (HbA1c <6%) and were changed by acute high glucose exposure (18.9 mmol/L for 24 h) as well as correlated with in vitro insulin secretion (SI). A: The correlation of the average expression in 31 islets of the 25 upregulated genes. B: The correlation of the 48 downregulated genes vs. insulin secretion. C: Expression of the five genes (SIPA1L2, HRK, TMEM132D, MBP, and CPEB1) that also were changed by acute high glucose exposure in islets from donors with HG (n = 14) that might represent genes that are the most sensitive to the toxic effects of glucose. D: Correlation of the gene expression with in vitro insulin secretion (SI) of the five genes. Data are mean with minimum–maximum values.

Figure 4

Potentially glucotoxic-sensitive genes. In total, 73 genes were differentially expressed in the AGT islets (hyperglycemia [HG]: HbA1c ≥6% or <6.5%; T2D: HbA1c ≥6.5%) compared with NGT (HbA1c <6%) and were changed by acute high glucose exposure (18.9 mmol/L for 24 h) as well as correlated with in vitro insulin secretion (SI). A: The correlation of the average expression in 31 islets of the 25 upregulated genes. B: The correlation of the 48 downregulated genes vs. insulin secretion. C: Expression of the five genes (SIPA1L2, HRK, TMEM132D, MBP, and CPEB1) that also were changed by acute high glucose exposure in islets from donors with HG (n = 14) that might represent genes that are the most sensitive to the toxic effects of glucose. D: Correlation of the gene expression with in vitro insulin secretion (SI) of the five genes. Data are mean with minimum–maximum values.

Close modal
Table 3

Glucose-sensitive genes

AGT vs. NGT
Acute glucose
Insulin secretion
Gene IDGene symbolAveExpr (log2CPM)Regression coefficient βq valuelog2FCq valuePearson rP value
ENSG00000145888 GLRA1 2.84 −0.69 5.29E-03 −0.83 1.15E-06 0.34 2.08E-04 
ENSG00000167037 SGSM1 4.86 −0.27 1.86E-02 −0.29 2.63E-03 0.29 1.62E-03 
ENSG00000226852 — 1.40 −1.02 4.48E-10 −0.62 1.18E-03 0.29 1.72E-03 
ENSG00000034510 TMSB10 8.16 0.32 8.63E-03 0.36 8.06E-03 −0.29 2.20E-03 
ENSG00000157388 CACNA1D 6.24 −0.25 3.84E-02 −0.23 1.51E-02 0.28 3.34E-03 
ENSG00000173926 MARCH3 3.02 0.22 3.40E-02 0.22 1.68E-02 −0.27 3.34E-03 
ENSG00000128872 TMOD2 6.12 −0.21 3.51E-02 −0.33 7.44E-05 0.27 4.53E-03 
ENSG00000197747 S100A10 6.53 0.47 9.98E-03 0.48 3.73E-03 −0.26 4.82E-03 
ENSG00000087095 NLK 5.14 −0.14 6.84E-03 −0.13 5.26E-03 0.26 5.63E-03 
ENSG00000104381 GDAP1 5.25 −0.21 3.13E-02 −0.22 3.41E-02 0.26 5.91E-03 
ENSG00000134121 CHL1 3.72 −0.68 6.32E-04 −0.37 5.16E-03 0.26 5.91E-03 
ENSG00000010278 CD9 6.95 0.17 4.40E-02 0.19 1.13E-03 −0.25 7.72E-03 
ENSG00000163191 S100A11 7.32 0.30 3.80E-02 0.36 1.30E-03 −0.25 7.92E-03 
ENSG00000170500 LONRF2 6.59 −0.23 2.10E-02 −0.30 6.64E-03 0.25 8.01E-03 
ENSG00000183255 PTTG1IP 8.17 0.18 1.36E-02 0.23 1.22E-02 −0.25 8.26E-03 
ENSG00000088538 DOCK3 4.05 −0.29 2.18E-02 −0.40 1.75E-03 0.25 8.66E-03 
ENSG00000115112 TFCP2L1 4.44 −0.28 1.50E-02 −0.29 1.35E-03 0.25 8.71E-03 
ENSG00000100558 PLEK2 2.64 0.37 3.66E-02 0.41 4.37E-03 −0.25 9.10E-03 
ENSG00000101311 FERMT1 2.97 0.40 4.94E-02 0.35 3.03E-02 −0.24 9.43E-03 
ENSG00000151952 TMEM132D 4.92 −0.30 1.98E-02 −0.65 4.99E-06 0.24 9.70E-03 
ENSG00000011422 PLAUR 4.90 0.42 1.09E-02 0.23 3.05E-02 −0.24 1.06E-02 
ENSG00000132640 BTBD3 7.05 −0.28 9.58E-04 −0.31 5.14E-04 0.24 1.10E-02 
ENSG00000231290 APCDD1L-AS1 3.90 −0.50 2.73E-03 −0.36 2.20E-03 0.24 1.12E-02 
ENSG00000091157 WDR7 5.82 −0.15 4.33E-02 −0.13 1.88E-02 0.24 1.12E-02 
ENSG00000145087 STXBP5L 4.31 −0.35 1.50E-02 −0.37 2.63E-02 0.24 1.18E-02 
ENSG00000134138 MEIS2 6.78 −0.22 1.86E-02 −0.33 4.70E-05 0.24 1.19E-02 
ENSG00000228794 LINC01128 5.37 −0.19 4.02E-02 −0.22 8.49E-03 0.23 1.35E-02 
ENSG00000151320 AKAP6 3.68 −0.22 4.05E-02 −0.47 5.76E-04 0.23 1.44E-02 
ENSG00000198768 APCDD1L 3.77 −0.43 1.53E-02 −0.28 4.52E-02 0.23 1.57E-02 
ENSG00000196878 LAMB3 6.41 0.47 2.54E-02 0.38 1.49E-02 −0.23 1.59E-02 
ENSG00000258057 BCDIN3D-AS1 0.70 −0.31 5.29E-03 −0.26 2.65E-02 0.23 1.63E-02 
ENSG00000240694 PNMA2 7.33 −0.26 4.05E-02 −0.40 3.76E-03 0.22 1.75E-02 
ENSG00000125814 NAPB 5.55 −0.24 1.50E-02 −0.31 7.00E-03 0.22 1.79E-02 
ENSG00000137673 MMP7 8.01 0.46 2.71E-02 0.30 1.91E-02 −0.22 1.79E-02 
ENSG00000178177 LCORL 4.90 −0.25 1.08E-02 −0.15 4.41E-02 0.22 1.81E-02 
ENSG00000162374 ELAVL4 5.26 −0.29 2.31E-02 −0.44 2.26E-03 0.22 1.88E-02 
ENSG00000126773 PCNXL4 6.02 −0.12 3.41E-02 −0.18 5.99E-04 0.22 2.17E-02 
ENSG00000128881 TTBK2 5.18 −0.18 2.75E-02 −0.30 4.31E-04 0.22 2.18E-02 
ENSG00000057704 TMCC3 5.29 −0.29 1.08E-02 −0.21 4.87E-02 0.22 2.25E-02 
ENSG00000131037 EPS8L1 1.98 0.51 2.34E-02 0.39 3.27E-02 −0.21 2.35E-02 
ENSG00000186188 FFAR4 3.59 −0.52 1.85E-03 −0.41 5.10E-03 0.21 2.35E-02 
ENSG00000124570 SERPINB6 6.73 0.13 3.57E-02 0.23 2.41E-05 −0.21 2.36E-02 
ENSG00000198908 BHLHB9 4.20 −0.21 1.67E-02 −0.29 3.85E-03 0.21 2.48E-02 
ENSG00000074416 MGLL 4.62 0.40 2.91E-02 0.27 2.70E-02 −0.21 2.60E-02 
ENSG00000197971 MBP 6.88 −0.17 2.68E-02 −0.62 1.69E-06 0.21 2.68E-02 
ENSG00000116141 MARK1 4.93 −0.27 1.07E-02 −0.38 8.30E-04 0.21 2.78E-02 
ENSG00000143641 GALNT2 6.82 0.27 3.59E-02 0.28 1.22E-02 −0.21 2.80E-02 
ENSG00000116128 BCL9 5.95 −0.17 2.42E-02 −0.28 1.57E-03 0.21 2.80E-02 
ENSG00000156650 KAT6B 5.89 −0.15 3.84E-02 −0.28 4.53E-05 0.21 2.88E-02 
ENSG00000006432 MAP3K9 5.64 −0.17 1.68E-02 −0.17 2.29E-03 0.21 2.90E-02 
ENSG00000174306 ZHX3 5.98 −0.16 3.26E-02 −0.27 1.13E-03 0.21 2.94E-02 
ENSG00000175505 CLCF1 2.62 0.40 2.91E-02 0.31 9.02E-03 −0.21 2.95E-02 
ENSG00000213977 TAX1BP3 1.97 0.36 1.24E-02 0.38 1.74E-02 −0.20 3.11E-02 
ENSG00000062598 ELMO2 6.01 −0.19 6.64E-04 −0.12 3.56E-03 0.20 3.19E-02 
ENSG00000107864 CPEB3 4.11 −0.19 5.29E-03 −0.23 1.95E-03 0.20 3.19E-02 
ENSG00000253958 CLDN23 2.56 0.31 1.94E-02 0.28 3.06E-02 −0.20 3.25E-02 
ENSG00000132470 ITGB4 4.27 0.56 2.31E-02 0.70 2.29E-03 −0.20 3.27E-02 
ENSG00000127328 RAB3IP 6.32 −0.15 1.09E-02 −0.16 3.31E-03 0.20 3.36E-02 
ENSG00000143469 SYT14 5.29 −0.35 1.10E-02 −0.63 8.25E-05 0.20 3.39E-02 
ENSG00000146232 NFKBIE 3.59 0.28 3.77E-02 0.38 4.51E-03 −0.20 3.43E-02 
ENSG00000179331 RAB39A 2.53 −0.36 1.22E-02 −0.36 8.45E-03 0.20 3.47E-02 
ENSG00000197991 PCDH20 2.71 −0.35 2.10E-02 −0.44 9.32E-04 0.20 3.58E-02 
ENSG00000100290 BIK 0.77 0.40 1.50E-02 0.42 1.49E-02 −0.20 3.68E-02 
ENSG00000111644 ACRBP 1.87 −0.27 3.08E-02 −0.43 4.19E-03 0.20 3.87E-02 
ENSG00000104154 SLC30A4 4.37 −0.19 1.65E-02 −0.20 3.51E-02 0.20 3.88E-02 
ENSG00000125731 SH2D3A 3.33 0.43 3.12E-02 0.40 7.68E-03 −0.20 3.90E-02 
ENSG00000189159 HN1 5.21 0.28 2.28E-02 0.48 3.35E-04 −0.19 4.12E-02 
ENSG00000131437 KIF3A 5.87 −0.17 2.58E-02 −0.13 4.13E-02 0.19 4.14E-02 
ENSG00000042493 CAPG 3.78 0.40 2.61E-02 0.47 1.81E-03 −0.19 4.43E-02 
ENSG00000025708 TYMP 3.38 0.49 1.68E-02 0.49 2.86E-03 −0.19 4.86E-02 
ENSG00000211451 GNRHR2 1.36 −0.27 2.10E-02 −0.31 4.02E-02 0.19 4.90E-02 
ENSG00000163935 SFMBT1 4.96 −0.13 2.54E-02 −0.15 3.06E-02 0.19 4.94E-02 
ENSG00000182606 TRAK1 7.09 −0.16 3.62E-02 −0.23 1.65E-02 0.19 4.97E-02 
AGT vs. NGT
Acute glucose
Insulin secretion
Gene IDGene symbolAveExpr (log2CPM)Regression coefficient βq valuelog2FCq valuePearson rP value
ENSG00000145888 GLRA1 2.84 −0.69 5.29E-03 −0.83 1.15E-06 0.34 2.08E-04 
ENSG00000167037 SGSM1 4.86 −0.27 1.86E-02 −0.29 2.63E-03 0.29 1.62E-03 
ENSG00000226852 — 1.40 −1.02 4.48E-10 −0.62 1.18E-03 0.29 1.72E-03 
ENSG00000034510 TMSB10 8.16 0.32 8.63E-03 0.36 8.06E-03 −0.29 2.20E-03 
ENSG00000157388 CACNA1D 6.24 −0.25 3.84E-02 −0.23 1.51E-02 0.28 3.34E-03 
ENSG00000173926 MARCH3 3.02 0.22 3.40E-02 0.22 1.68E-02 −0.27 3.34E-03 
ENSG00000128872 TMOD2 6.12 −0.21 3.51E-02 −0.33 7.44E-05 0.27 4.53E-03 
ENSG00000197747 S100A10 6.53 0.47 9.98E-03 0.48 3.73E-03 −0.26 4.82E-03 
ENSG00000087095 NLK 5.14 −0.14 6.84E-03 −0.13 5.26E-03 0.26 5.63E-03 
ENSG00000104381 GDAP1 5.25 −0.21 3.13E-02 −0.22 3.41E-02 0.26 5.91E-03 
ENSG00000134121 CHL1 3.72 −0.68 6.32E-04 −0.37 5.16E-03 0.26 5.91E-03 
ENSG00000010278 CD9 6.95 0.17 4.40E-02 0.19 1.13E-03 −0.25 7.72E-03 
ENSG00000163191 S100A11 7.32 0.30 3.80E-02 0.36 1.30E-03 −0.25 7.92E-03 
ENSG00000170500 LONRF2 6.59 −0.23 2.10E-02 −0.30 6.64E-03 0.25 8.01E-03 
ENSG00000183255 PTTG1IP 8.17 0.18 1.36E-02 0.23 1.22E-02 −0.25 8.26E-03 
ENSG00000088538 DOCK3 4.05 −0.29 2.18E-02 −0.40 1.75E-03 0.25 8.66E-03 
ENSG00000115112 TFCP2L1 4.44 −0.28 1.50E-02 −0.29 1.35E-03 0.25 8.71E-03 
ENSG00000100558 PLEK2 2.64 0.37 3.66E-02 0.41 4.37E-03 −0.25 9.10E-03 
ENSG00000101311 FERMT1 2.97 0.40 4.94E-02 0.35 3.03E-02 −0.24 9.43E-03 
ENSG00000151952 TMEM132D 4.92 −0.30 1.98E-02 −0.65 4.99E-06 0.24 9.70E-03 
ENSG00000011422 PLAUR 4.90 0.42 1.09E-02 0.23 3.05E-02 −0.24 1.06E-02 
ENSG00000132640 BTBD3 7.05 −0.28 9.58E-04 −0.31 5.14E-04 0.24 1.10E-02 
ENSG00000231290 APCDD1L-AS1 3.90 −0.50 2.73E-03 −0.36 2.20E-03 0.24 1.12E-02 
ENSG00000091157 WDR7 5.82 −0.15 4.33E-02 −0.13 1.88E-02 0.24 1.12E-02 
ENSG00000145087 STXBP5L 4.31 −0.35 1.50E-02 −0.37 2.63E-02 0.24 1.18E-02 
ENSG00000134138 MEIS2 6.78 −0.22 1.86E-02 −0.33 4.70E-05 0.24 1.19E-02 
ENSG00000228794 LINC01128 5.37 −0.19 4.02E-02 −0.22 8.49E-03 0.23 1.35E-02 
ENSG00000151320 AKAP6 3.68 −0.22 4.05E-02 −0.47 5.76E-04 0.23 1.44E-02 
ENSG00000198768 APCDD1L 3.77 −0.43 1.53E-02 −0.28 4.52E-02 0.23 1.57E-02 
ENSG00000196878 LAMB3 6.41 0.47 2.54E-02 0.38 1.49E-02 −0.23 1.59E-02 
ENSG00000258057 BCDIN3D-AS1 0.70 −0.31 5.29E-03 −0.26 2.65E-02 0.23 1.63E-02 
ENSG00000240694 PNMA2 7.33 −0.26 4.05E-02 −0.40 3.76E-03 0.22 1.75E-02 
ENSG00000125814 NAPB 5.55 −0.24 1.50E-02 −0.31 7.00E-03 0.22 1.79E-02 
ENSG00000137673 MMP7 8.01 0.46 2.71E-02 0.30 1.91E-02 −0.22 1.79E-02 
ENSG00000178177 LCORL 4.90 −0.25 1.08E-02 −0.15 4.41E-02 0.22 1.81E-02 
ENSG00000162374 ELAVL4 5.26 −0.29 2.31E-02 −0.44 2.26E-03 0.22 1.88E-02 
ENSG00000126773 PCNXL4 6.02 −0.12 3.41E-02 −0.18 5.99E-04 0.22 2.17E-02 
ENSG00000128881 TTBK2 5.18 −0.18 2.75E-02 −0.30 4.31E-04 0.22 2.18E-02 
ENSG00000057704 TMCC3 5.29 −0.29 1.08E-02 −0.21 4.87E-02 0.22 2.25E-02 
ENSG00000131037 EPS8L1 1.98 0.51 2.34E-02 0.39 3.27E-02 −0.21 2.35E-02 
ENSG00000186188 FFAR4 3.59 −0.52 1.85E-03 −0.41 5.10E-03 0.21 2.35E-02 
ENSG00000124570 SERPINB6 6.73 0.13 3.57E-02 0.23 2.41E-05 −0.21 2.36E-02 
ENSG00000198908 BHLHB9 4.20 −0.21 1.67E-02 −0.29 3.85E-03 0.21 2.48E-02 
ENSG00000074416 MGLL 4.62 0.40 2.91E-02 0.27 2.70E-02 −0.21 2.60E-02 
ENSG00000197971 MBP 6.88 −0.17 2.68E-02 −0.62 1.69E-06 0.21 2.68E-02 
ENSG00000116141 MARK1 4.93 −0.27 1.07E-02 −0.38 8.30E-04 0.21 2.78E-02 
ENSG00000143641 GALNT2 6.82 0.27 3.59E-02 0.28 1.22E-02 −0.21 2.80E-02 
ENSG00000116128 BCL9 5.95 −0.17 2.42E-02 −0.28 1.57E-03 0.21 2.80E-02 
ENSG00000156650 KAT6B 5.89 −0.15 3.84E-02 −0.28 4.53E-05 0.21 2.88E-02 
ENSG00000006432 MAP3K9 5.64 −0.17 1.68E-02 −0.17 2.29E-03 0.21 2.90E-02 
ENSG00000174306 ZHX3 5.98 −0.16 3.26E-02 −0.27 1.13E-03 0.21 2.94E-02 
ENSG00000175505 CLCF1 2.62 0.40 2.91E-02 0.31 9.02E-03 −0.21 2.95E-02 
ENSG00000213977 TAX1BP3 1.97 0.36 1.24E-02 0.38 1.74E-02 −0.20 3.11E-02 
ENSG00000062598 ELMO2 6.01 −0.19 6.64E-04 −0.12 3.56E-03 0.20 3.19E-02 
ENSG00000107864 CPEB3 4.11 −0.19 5.29E-03 −0.23 1.95E-03 0.20 3.19E-02 
ENSG00000253958 CLDN23 2.56 0.31 1.94E-02 0.28 3.06E-02 −0.20 3.25E-02 
ENSG00000132470 ITGB4 4.27 0.56 2.31E-02 0.70 2.29E-03 −0.20 3.27E-02 
ENSG00000127328 RAB3IP 6.32 −0.15 1.09E-02 −0.16 3.31E-03 0.20 3.36E-02 
ENSG00000143469 SYT14 5.29 −0.35 1.10E-02 −0.63 8.25E-05 0.20 3.39E-02 
ENSG00000146232 NFKBIE 3.59 0.28 3.77E-02 0.38 4.51E-03 −0.20 3.43E-02 
ENSG00000179331 RAB39A 2.53 −0.36 1.22E-02 −0.36 8.45E-03 0.20 3.47E-02 
ENSG00000197991 PCDH20 2.71 −0.35 2.10E-02 −0.44 9.32E-04 0.20 3.58E-02 
ENSG00000100290 BIK 0.77 0.40 1.50E-02 0.42 1.49E-02 −0.20 3.68E-02 
ENSG00000111644 ACRBP 1.87 −0.27 3.08E-02 −0.43 4.19E-03 0.20 3.87E-02 
ENSG00000104154 SLC30A4 4.37 −0.19 1.65E-02 −0.20 3.51E-02 0.20 3.88E-02 
ENSG00000125731 SH2D3A 3.33 0.43 3.12E-02 0.40 7.68E-03 −0.20 3.90E-02 
ENSG00000189159 HN1 5.21 0.28 2.28E-02 0.48 3.35E-04 −0.19 4.12E-02 
ENSG00000131437 KIF3A 5.87 −0.17 2.58E-02 −0.13 4.13E-02 0.19 4.14E-02 
ENSG00000042493 CAPG 3.78 0.40 2.61E-02 0.47 1.81E-03 −0.19 4.43E-02 
ENSG00000025708 TYMP 3.38 0.49 1.68E-02 0.49 2.86E-03 −0.19 4.86E-02 
ENSG00000211451 GNRHR2 1.36 −0.27 2.10E-02 −0.31 4.02E-02 0.19 4.90E-02 
ENSG00000163935 SFMBT1 4.96 −0.13 2.54E-02 −0.15 3.06E-02 0.19 4.94E-02 
ENSG00000182606 TRAK1 7.09 −0.16 3.62E-02 −0.23 1.65E-02 0.19 4.97E-02 

Genes whose expression changed in the same direction by acute and long-term hyperglycemia (AGT) that correlated negatively with in vitro insulin secretion (SI). AveExpr, average expression.

Differences in gene expression between human pancreatic islets from donors with hyperglycemia and normoglycemia may be a physiological consequence or the cause of elevated glucose. These effects have been difficult to separate in cross-sectional studies, which have not explored changes in gene expression in response to short-term (acute) hyperglycemia. We provide such a map in islets from both donors with normoglycemia and donors with hyperglycemia exposed to high glucose for 24 h. Not surprisingly, because glucose is a transcriptional modulator (31), ∼30% of the genes expressed in the human islets are acutely regulated by glucose (Supplementary Table 6). Only 20% of genes changed in response to short-term hyperglycemia in islets from donors with hyperglycemia (Supplementary Table 7), suggesting that they already are turned on or off by chronic hyperglycemia. Of note, these islets were subjected to a washout period where they were cultured at 5.5 mmol/L glucose for several days after isolation, so the lack of acute effect of glucose might also be the consequence of a metabolic memory.

To identify genes that might be causally involved in the pathogenesis of T2D, we postulated that they would not only show differences in expression between islets from donors with hyperglycemia or normoglycemia but also show that expression would not change in the same direction after short-term hyperglycemia. Furthermore, we expected that these changes in gene expression would correlate with insulin secretion. One of these genes was ERO1LB that encodes an oxidoreductase involved in the folding of proinsulin in the ER. Knockdown of ERO1LB in the insulin misfolding–prone Akita mouse resulted in islet destruction and development of diabetes (32). In support of this, expression of Ero1b was reduced in islets from two diabetic mouse models. However, overexpression of Ero1b also seems to induce ER stress in β-cells, leading to impaired glucose-stimulated insulin release and suggesting a possible U-shaped effect of ERO1LB expression on ER stress (33). Four other putatively causative genes (TMEM132C, DOCK10, PRR14L, and IGSF11) harbored potential loss-of-function variants associated with in vivo insulin secretion. TMEM132C is an interesting candidate, but little is known about its role in islet function. Expression of DOCK10 and PRR14L were both possibly protective in the islets. Dock10 is a potential guanine nucleotide exchange factor required for the activation of the rho family of GTPases, and Dock10 interacts with Cdc42 to promote the formation of the guanosine triphosphate–bound activated form (34). Cdc42 activated by glucose (35) has previously been associated with insulin secretion in rodent and human islets (36). Small interfering RNA–mediated silencing of Cdc42 in isolated islets results in impaired second phase insulin secretion (37). DOCK10 deficiency could, therefore, potentially impair insulin secretion through its effect on GTPases, such as Cdc42.

In addition, two genes, SIDT1 and RHBDF1, that showed different expression in islets from donors with hyperglycemia and normoglycemia harbored eQTLs that were associated with insulin secretion. The A allele of eQTL SNP rs11929640 was associated with increased expression of SIDT1 in the islets and with increased in vitro insulin secretion. Expression of SIDT1 was decreased in islets from the donors with hyperglycemia and correlated positively with SI, suggesting a link between decreased expression and impaired insulin secretion. SIDT1 encodes an RNA transporter that can transfer small RNA molecules, such as micro RNA, inside the cell (38). The RHBDF1 gene showed increased expression in islets from donors with hyperglycemia and correlated negatively with insulin secretion. In contrast, the T allele of the eQTL SNP rs9930775 was associated with decreased expression and in vivo insulin secretion, suggesting that the first finding was a consequence of hyperglycemia, whereas the eQTL could reflect a causal genetic mechanism. These findings will require validation by genetic engineering, predominantly in human islets.

Thirteen of the 134 established T2D/glycemic trait loci had eQTLs in human islets, with most of them showing cis effects (only 7 trans). Expression FN3KRP correlated negatively with insulin secretion in islets. Of note, the T allele of the eQTL SNP rs1046896 in FN3KRP has been previously associated with increased HbA1c levels (23). Because expression of FN3KRP was decreased in T allele carriers, the data suggest that normal expression of FN3KRP is required for maintaining normal insulin secretion. Of note, the GWAS SNP is located in the 3′ untranslated region of FN3KRP, but the gene suggested in the literature to be affected by the SNP is the paralog FN3K. Both genes encode enzymes involved in deglycation of proteins, but they have different substrates. FN3K, but not FN3KRP, can phosphorylate fructosamine, which is glycated by glucose (39).

In line with other published results from our group (40), the rs10830963 T2D risk allele was a strong eQTL for increased expression of MTNR1B and was associated with decreased in vivo insulin secretion. Paradoxically, rare loss-of-function variants in MTNR1B have also been associated with elevated glucose levels (41). Although the common rs10830963 is the strongest eQTL observed in human islets, rare loss-of-function variants would most likely exert their effects in most organs where MTNR1B is expressed and, thereby, possibly increase the risk of diabetes by other mechanisms than the common variant.

The T2D risk locus rs11257655 located between CDC123 and CAMK1D was an eQTL for the CAMK1D gene. The risk allele was associated with increased expression of CAMK1D and associated with in vivo insulin secretion. This risk allele has been shown to increase transcriptional activity possibly through FOXA1 and FOXA2 (42). The current results agree that as with eQTLs observed in other tissues, the locus regulates the expression of CAMK1D, not CDC123. Although the role of CAMK1D in the pathogenesis of T2D remains speculative, it may involve regulation of gene transcription through phosphorylation and activation of CREBP (43). CREBP is important for many aspects of β-cell function, including insulin exocytosis (44).

This study also provides information on genes sensitive to glucotoxicity, assuming that genes changed similarly by both acute and chronic hyperglycemia are susceptible to glucotoxicity (Fig. 4 and Table 3). Three of these genes harbored coding variants associated with in vivo insulin secretion: AKAP6, GALNT2, and FERMT1. AKAP6 could possibly influence insulin secretion through modulation of protein kinase A because mice with disruption of another A-kinase anchoring protein (AKAP150) show impaired insulin secretion (45). Expression of AKAP6 was positively correlated with insulin secretion, suggesting that glucose-induced downregulation of AKAP6 could result in impaired insulin secretion. In support of this, a coding variant in the gene was negatively associated with insulin secretion in vivo. Moreover, expression of TMEM132D and MBP was decreased after both acute and chronic hyperglycemia and correlated positively with insulin secretion, supporting the view that their downregulation could be involved in impaired insulin secretion. This is further supported by previous work showing that MBP stimulates insulin secretion (46). Both genes also were affected in islets from donors with hyperglycemia exposed to short-term hyperglycemia (Supplementary Table 14), suggesting that they are sensitive to glucotoxicity.

Studies of human islets are subject to a number of difficulties. A considerable number of factors will affect the islets’ phenotype connected to the nature of death of the donor, harvest of the organs, preparations of the islets, and so forth. In this study, we attempted to address these issues by using paired data where the changes we see by treating the islets with glucose are observed within the islet preparation and the effect is steady across the data set. This approach will decrease the contribution of potential effects of external and individual factors in each islet preparation. We also used a considerable number of samples in the study to present stable changes and differences. Although most of the results at this stage are descriptive, they provide a catalog of changes in gene expression in human pancreatic islets after acute and chronic exposure to glucose that can serve as a resource for the dissection of the molecular mechanisms leading to or protecting from T2D.

Acknowledgments. Human pancreatic islets were obtained from The Nordic Network for Clinical Islet Transplantation, supported by the Swedish national strategic research initiative EXODIAB and JDRF.

Funding. Support for this research was provided by the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 269045 awarded to L.G. The work was also supported by project grants from the Vetenskapsrådet (Swedish Research Council) to L.G. (Dnr 2010-3490) and Pfizer.

Duality of Interest. No potential conflicts of interest relevant to this article were reported.

Author Contributions. E.O.-L. and U.K. performed experiments. E.O.-L., U.K., P.S., R.B.P., N.O., E.A., J.F., and P.V. performed analysis of the data. E.O.-L., U.K., P.S., R.B.P., N.O., E.A., J.F., O.H., L.G., and P.V. critically revised and contributed to the manuscript. E.O.-L., L.G., and P.V. wrote the draft of the manuscript. O.H., L.G., and P.V. designed the study. P.V. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

1.
U.K. Prospective Diabetes Study Group
.
U.K. Prospective Diabetes Study 16. Overview of 6 years’ therapy of type II diabetes: A progressive disease
.
Diabetes
1995
;
44
:
1249
1258
[PubMed]
2.
Butler
AE
,
Janson
J
,
Bonner-Weir
S
,
Ritzel
R
,
Rizza
RA
,
Butler
PC
.
Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes
.
Diabetes
2003
;
52
:
102
110
[PubMed]
3.
Kaiser
N
,
Leibowitz
G
,
Nesher
R
.
Glucotoxicity and beta-cell failure in type 2 diabetes mellitus
.
J Pediatr Endocrinol Metab
2003
;
16
:
5
22
[PubMed]
4.
Ferrannini
E
,
Gastaldelli
A
,
Miyazaki
Y
,
Matsuda
M
,
Mari
A
,
DeFronzo
RA
.
β-Cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis
.
J Clin Endocrinol Metab
2005
;
90
:
493
500
[PubMed]
5.
Marchetti
P
,
Bugliani
M
,
Boggi
U
,
Masini
M
,
Marselli
L
.
The pancreatic beta cells in human type 2 diabetes
.
Adv Exp Med Biol
2012
;
771
:
288
309
[PubMed]
6.
Prentki
M
,
Nolan
CJ
.
Islet beta cell failure in type 2 diabetes
.
J Clin Invest
2006
;
116
:
1802
1812
[PubMed]
7.
Alejandro
EU
,
Gregg
B
,
Blandino-Rosano
M
,
Cras-Meneur
C
,
Bernal-Mizrachi
E
.
Natural history of β-cell adaptation and failure in type 2 diabetes
.
Mol Aspects Med
2015
;42:19–41
[PubMed]
8.
Fadista
J
,
Vikman
P
,
Laakso
EO
, et al
.
Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism
.
Proc Natl Acad Sci U S A
2014
;
111
:
13924
13929
[PubMed]
9.
Taneera
J
,
Fadista
J
,
Ahlqvist
E
, et al
.
Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia
.
Hum Mol Genet
2015
;24:945–955
[PubMed]
10.
Friberg
AS
,
Brandhorst
H
,
Buchwald
P
, et al
.
Quantification of the islet product: presentation of a standardized current good manufacturing practices compliant system with minimal variability
.
Transplantation
2011
;
91
:
677
683
[PubMed]
11.
Vikman
P
,
Fadista
J
,
Oskolkov
N
.
RNA sequencing: current and prospective uses in metabolic research
.
J Mol Endocrinol
2014
;
53
:
R93
R101
[PubMed]
12.
Ståhle
MU
,
Brandhorst
D
,
Korsgren
O
,
Knutson
F
.
Pathogen inactivation of human serum facilitates its clinical use for islet cell culture and subsequent transplantation
.
Cell Transplant
2011
;
20
:
775
781
[PubMed]
13.
Dobin
A
,
Davis
CA
,
Schlesinger
F
, et al
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics
2013
;
29
:
15
21
[PubMed]
14.
Harrow
J
,
Frankish
A
,
Gonzalez
JM
, et al
.
GENCODE: the reference human genome annotation for The ENCODE Project
.
Genome Res
2012
;
22
:
1760
1774
[PubMed]
15.
Liao
Y
,
Smyth
GK
,
Shi
W
.
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
.
Bioinformatics
2014
;
30
:
923
930
[PubMed]
16.
Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014;15:R29
17.
Johnson
WE
,
Li
C
,
Rabinovic
A
.
Adjusting batch effects in microarray expression data using empirical Bayes methods
.
Biostatistics
2007
;
8
:
118
127
[PubMed]
18.
Ritchie
ME
,
Phipson
B
,
Wu
D
, et al
.
limma powers differential expression analyses for RNA-sequencing and microarray studies
.
Nucleic Acids Res
2015
;
43
:
e47
[PubMed]
19.
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, The R Foundation, 2015.
20.
International Expert Committee
.
International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes
.
Diabetes Care
2009
;
32
:
1327
1334
[PubMed]
21.
Isomaa
B
,
Forsén
B
,
Lahti
K
, et al
.
A family history of diabetes is associated with reduced physical fitness in the Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study
.
Diabetologia
2010
;
53
:
1709
1713
[PubMed]
22.
Morris
AP
,
Voight
BF
,
Teslovich
TM
, et al.;
Wellcome Trust Case Control Consortium
;
Meta-Analyses of Glucose and Insulin-Related Traits Consortium (MAGIC) Investigators
;
Genetic Investigation of Anthropometric Traits (GIANT) Consortium
;
Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium
;
South Asian Type 2 Diabetes (SAT2D) Consortium
;
Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium
.
Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
.
Nat Genet
2012
;
44
:
981
990
[PubMed]
23.
Soranzo
N
,
Sanna
S
,
Wheeler
E
, et al
.
Common variants at 10 genomic loci influence hemoglobin A1c levels via glycemic and nonglycemic pathways [published correction appears in Diabetes 2011;60:1050–1051]
.
Diabetes
2010
;
59
:
3229
3239
[PubMed]
24.
Manning
AK
,
Hivert
MF
,
Scott
RA
, et al.;
Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium
;
Multiple Tissue Human Expression Resource (MUTHER) Consortium
.
A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance
.
Nat Genet
2012
;
44
:
659
669
[PubMed]
25.
Prokopenko
I
,
Poon
W
,
Mägi
R
, et al
.
A central role for GRB10 in regulation of islet function in man
.
PLoS Genet
2014
;
10
:
e1004235
[PubMed]
26.
Voight
BF
,
Scott
LJ
,
Steinthorsdottir
V
, et al.;
MAGIC Investigators
;
GIANT Consortium
.
Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
.
Nat Genet
2010
;
42
:
579
589
[PubMed]
27.
Scott
RA
,
Lagou
V
,
Welch
RP
, et al.;
Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium
.
Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways
.
Nat Genet
2012
;
44
:
991
1005
[PubMed]
28.
Saxena
R
,
Hivert
MF
,
Langenberg
C
, et al.;
GIANT Consortium
;
MAGIC Investigators
.
Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
.
Nat Genet
2010
;
42
:
142
148
[PubMed]
29.
Strawbridge
RJ
,
Dupuis
J
,
Prokopenko
I
, et al.;
DIAGRAM Consortium
;
GIANT Consortium
;
MuTHER Consortium
;
CARDIoGRAM Consortium
;
C4D Consortium
.
Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes
.
Diabetes
2011
;
60
:
2624
2634
[PubMed]
30.
Tuomi
T
,
Nagorny
CLF
,
Singh
P
, et al
.
Increased melatonin signaling is a risk factor for type 2 diabetes
.
Cell Metab
2016
;
23
:
1067
1077
[PubMed]
31.
Meugnier
E
,
Rome
S
,
Vidal
H
.
Regulation of gene expression by glucose
.
Curr Opin Clin Nutr Metab Care
2007
;
10
:
518
522
[PubMed]
32.
Zito
E
,
Chin
KT
,
Blais
J
,
Harding
HP
,
Ron
D
.
ERO1-beta, a pancreas-specific disulfide oxidase, promotes insulin biogenesis and glucose homeostasis
.
J Cell Biol
2010
;
188
:
821
832
[PubMed]
33.
Awazawa
M
,
Futami
T
,
Sakada
M
, et al
.
Deregulation of pancreas-specific oxidoreductin ERO1β in the pathogenesis of diabetes mellitus
.
Mol Cell Biol
2014
;
34
:
1290
1299
[PubMed]
34.
Nishikimi
A
,
Meller
N
,
Uekawa
N
,
Isobe
K
,
Schwartz
MA
,
Maruyama
M
.
Zizimin2: a novel, DOCK180-related Cdc42 guanine nucleotide exchange factor expressed predominantly in lymphocytes
.
FEBS Lett
2005
;
579
:
1039
1046
[PubMed]
35.
Nevins
AK
,
Thurmond
DC
.
Glucose regulates the cortical actin network through modulation of Cdc42 cycling to stimulate insulin secretion
.
Am J Physiol Cell Physiol
2003
;
285
:
C698
C710
[PubMed]
36.
Kowluru
A
,
Seavey
SE
,
Li
G
, et al
.
Glucose- and GTP-dependent stimulation of the carboxyl methylation of CDC42 in rodent and human pancreatic islets and pure beta cells. Evidence for an essential role of GTP-binding proteins in nutrient-induced insulin secretion
.
J Clin Invest
1996
;
98
:
540
555
[PubMed]
37.
Wang
Z
,
Oh
E
,
Thurmond
DC
.
Glucose-stimulated Cdc42 signaling is essential for the second phase of insulin secretion
.
J Biol Chem
2007
;
282
:
9536
9546
[PubMed]
38.
Elhassan
MO
,
Christie
J
,
Duxbury
MS
.
Homo sapiens systemic RNA interference-defective-1 transmembrane family member 1 (SIDT1) protein mediates contact-dependent small RNA transfer and microRNA-21-driven chemoresistance
.
J Biol Chem
2012
;
287
:
5267
5277
[PubMed]
39.
Collard
F
,
Delpierre
G
,
Stroobant
V
,
Matthijs
G
,
Van Schaftingen
E
.
A mammalian protein homologous to fructosamine-3-kinase is a ketosamine-3-kinase acting on psicosamines and ribulosamines but not on fructosamines
.
Diabetes
2003
;
52
:
2888
2895
[PubMed]
40.
Lyssenko
V
,
Nagorny
CL
,
Erdos
MR
, et al
.
Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion
.
Nat Genet
2009
;
41
:
82
88
[PubMed]
41.
Bonnefond
A
,
Clément
N
,
Fawcett
K
, et al.;
Meta-analysis of Glucose and Insulin-Related Traits Consortium (MAGIC)
.
Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes
.
Nat Genet
2012
;
44
:
297
301
[PubMed]
42.
Fogarty
MP
,
Cannon
ME
,
Vadlamudi
S
,
Gaulton
KJ
,
Mohlke
KL
.
Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus
.
PLoS Genet
2014
;
10
:
e1004633
[PubMed]
43.
Verploegen
S
,
Lammers
JW
,
Koenderman
L
,
Coffer
PJ
.
Identification and characterization of CKLiK, a novel granulocyte Ca(++)/calmodulin-dependent kinase
.
Blood
2000
;
96
:
3215
3223
[PubMed]
44.
Jansson
D
,
Ng
AC
,
Fu
A
,
Depatie
C
,
Al Azzabi
M
,
Screaton
RA
.
Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2
.
Proc Natl Acad Sci U S A
2008
;
105
:
10161
10166
[PubMed]
45.
Hinke
SA
,
Navedo
MF
,
Ulman
A
, et al
.
Anchored phosphatases modulate glucose homeostasis
.
EMBO J
2012
;
31
:
3991
4004
[PubMed]
46.
Kolehmainen
E
,
Knip
M
,
Leppäluoto
J
.
Myelin basic protein stimulates insulin and glucagon secretion from rat pancreatic islets in vitro and in vivo
.
Acta Physiol Scand
1990
;
139
:
493
501
[PubMed]
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.

Supplementary data