Extracellular vesicles (EVs), which contain microRNA (miRNA), constitute a novel means of cell communication that may contribute to the inevitable expansion of renal fibrosis during diabetic kidney disease (DKD). Exendin-4 is effective for treating DKD through its action on GLP-1R. However, the effect of exendin-4 on EVs miRNA expression and renal cell communication during the development of DKD remains unknown. In this study, we found that EVs derived from exendin-4 and high-glucose (Ex-HG)-pretreated HK-2 cells, which was taken up by normal HK-2 cells, resulted in decreased levels of FN and Col-I compared with those treated with HG pretreated HK-2 cells derived EVs. Furthermore, we found this may contribute to a decrease in miR-192 in both HK-2 cells and EVs after exendin-4 treatment in a p53-dependent manner. Besides, we found that the amelioration of renal fibrosis by exendin-4 occurs through a miR-192-GLP-1R pathway, indicating a new pathway by which exendin-4 regulates GLP-1R. The results of this study suggest that exendin-4 can inhibit the transfer of EVs miR-192 from HG-induced renal tubular epithelial cells to normal cells, thus inhibiting GLP-1R down-regulation and protecting renal cells. This study reports a new mechanism by which exendin-4 exerts a protective effect against DKD.

Disclosure

Y. Jia: None. Y. Xue: None.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.