Strong evidence suggests that an adverse in utero and/or early postnatal environment impacts on long-term risk of developing type 2 diabetes. We showed previously that miR-126 is increased in adipose tissue of mouse offspring born to obese mothers which leads to impaired insulin signaling pathway by silencing IRS-1 at the translational level. However, the full spectrum of targets of miR-126 and consequently the consequences of its overexpression for adipose tissue function are unknown. The aim of the current study was therefore to identify novel targets of miR-126 using the proteomic technique, known as Pulsed Stable Isotope Labeling by Amino Acids (pSILAC). 3T3-L1-cells were transfected with miR-126 and their proteome compared to those transfected with a scrambled sequence. We detected 4567 proteins that were translated in adipocytes and of these 401 demonstrated a >1.3 fold decrease following over-expression of miR-126. Bioinformatic analysis revealed that 43 of these contained a miR-126 seed sequence in their 3’un-translated region. This included known miR-126 targets such as IRS-1 and VCAM-1 as well as novel targets. One of the largest changes in expression was observed for Lunapark and through the use of luciferase assays and western blotting we independently confirmed this was a direct target of miR-126. Lunapark is a key component for stabilization of nascent three-way junctions in the endoplasmic reticulum (ER). Consistent with this role we observed altered levels of mTOR and XBP1 in cells treated with miR-126, reflecting the presence of ER stress. Together, the results suggest that overexpression of miR-126 can lead to both ER stress and Insulin Resistance and therefore represent a novel link between two pathways that contribute to development and progression to T2DM.

Disclosure

J.A. Faria: None. D. Duque Guimaraes: None. L. Pantaleao: None. T.P. Ong: None. A. Ozanne: None.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.