The auto antigen (Ag)-specific regulatory T cells (Tregs) from pluripotent stem cells (PSCs), i.e., PSC-Tregs, have the ability to suppress autoimmunity. PSC-Tregs can be programmed to be tissue-associated and to infiltrate into local inflamed tissues to suppress autoimmune responses after adoptive transfer. Nevertheless, the mechanisms by which the auto Ag-specific PSC-Tregs suppress the autoimmune response remain to be fully elucidated. In this study, we generated the functional auto Ag-specific Tregs from the induced PSC (iPSCs), i.e., iPSC-Tregs, and investigated the underlying mechanisms of autoimmunity suppression by these Tregs in a type 1 diabetes (T1D) murine model. A double transgenic (Tg) mouse model of T1D was established in F1 mice in which the first generation of RIP-mOVA Tg mice that were crossed with OT-I T cell receptor (TCR) Tg mice was challenged with vaccinia viruses expressing OVA (VACV-OVA). We show that adoptive transfer of OVA-specific iPSC-Tregs greatly suppressed autoimmunity in the animal model and prevented the insulin-secreting pancreatic β cells from destruction. Further, we demonstrate that the adoptive transfer significantly reduced the expression of ICAM-1 in the diabetic pancreas and inhibited the migration of pathogenic CD8+ T cells and the production of the pro-inflammatory IFN-γ in the pancreas. These results indicate that the stem cell-derived tissue-associated Tregs can robustly accumulate in the diabetic pancreas, and through down-regulating the expression of ICAM-1 in the local inflamed tissues and inhibiting the production of pro-inflammatory cytokine IFN-γ, suppress the migration and activity of the pathogenic immune cells that cause T1D.

Disclosure

J.J. Song: None.

Funding

American Diabetes Association (1-16-IBS-281); National Institutes of Health (R01AI121180, R21AI109239)

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.