Introduction & Objective: MOTS-c is a mitochondrial DNA-encoded microprotein that improves impaired glucose metabolism caused by aging and high fat diet. The presence of a naturally occurring genetic variant of MOTS-c, K14Q MOTS-c, increases the susceptibility to type 2 diabetes (T2D) in East Asians. Nevertheless, the precise mechanism of MOTS-c action has not been fully elucidated. Here, we demonstrate that the protein kinase CK2 is a functional and direct target of MOTS-c and that the reduced binding of K14Q MOTS-c to CK2 increases the risk of T2D.

Methods: We performed in vitro experiments, including dot blot, kinase activity, and surface plasmon resonance assays, to investigate the direct interaction between MOTS-c and CK2. We also examined the impact of MOTS-c treatment on CK2 activity in skeletal muscle, as well as on muscle glucose uptake in young mice. Subsequently, we investigated the impact of a naturally occurring K14Q MOTS-c variant on the prevalence of T2D in 12,068 Japanese individuals.

Results: Dot blot and cell-free kinase activity assays demonstrated that MOTS-c activated CK2 by binding directly to its α subunit, and this binding was confirmed using a surface plasmon resonance assay. Importantly, the binding affinity of K14Q MOTS-c to CK2α was 16-fold less than that of the wild type MOTS-c, and K14Q MOTS-c did not activate CK2 in the cell-free kinase activity assay. Skeletal muscle CK2 activity was lower in old mice and higher after exercise, and was increased by MOTS-c administration, but not K14Q MOTS-c. MOTS-c administration, but not K14Q MOTS-c, significantly enhanced muscle glucose uptake, which was blunted by a CK2 inhibitor. In humans, the K14Q MOTS-c carriers exhibited an increased risk of type 2 diabetes, particularly among individuals aged 60 and above, while this increased risk was mitigated by daily physical activity.

Conclusion: Together, these findings provide evidence that CK2 is required for MOTS-c effects and that the MOTS-c/CK2 pathway is a potential therapeutic target for T2D.<u></u>

Disclosure

H. Kumagai: None. S. Kim: None. B. Miller: None. S. Lee: None. H. Zempo: None. T. Natsume: None. J. Wan: None. R. Ramirez II: None. H.H. Mehta: None. Y. Nishida: None. N. Fuku: None. S. Dobashi: None. E. Miyamoto-Mikami: None. H. Naito: None. M. Hara: None. C. Iwasaka: None. Y. Yamada: None. Y. Higaki: None. K. Tanaka: None. K. Yen: None. P. Cohen: None.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.