Prediabetes is a metabolic condition associated with gut microbiome composition, though mechanisms remain elusive. We searched for faecal metabolites, a readout of gut microbiome function, associated with impaired fasting glucose (IFG) in 142 individuals with IFG and 1105 healthy individuals from TwinsUK. We used the KORA cohort (318 IFG individuals, 689 healthy individuals) to replicate our findings. We linearly combined 8 IFG-positively associated metabolites (1-methylxantine, nicotinate, glucuronate, uridine, cholesterol, serine, caffeine and protoporphyrin IX) into an IFG-metabolite score, which was significantly associated with higher odds ratios for IFG (TwinsUK: OR[95%CI]=3.9[3.02-5.02], p<0.0001, KORA: OR[95%CI]=1.3[1.16-1.52], p<0.0001) and incident type-2 diabetes (T2D) (TwinsUK: HR[95%CI]=4[1.97-8], p=0.0002). Although these are host-produced metabolites, we found that the gut microbiome is strongly associated with their faecal levels (AUC>70%). Abundances of Faecalibacillus intestinalis, Dorea formicigenerans, Ruminococcus torques and Dorea sp. AF24_7LB were positively associated with IFG, and such associations were partially mediated by 1-methylxanthine and nicotinate (VAF mean(SD)=14.4%(5.1), p<0.05). Our results suggest that gut microbiome is linked to prediabetes not only via the production of microbial metabolites but also by affecting intestinal absorption/excretion of host-produced metabolites and xenobiotics, which are correlated with the risk of IFG. Faecal metabolites enable modelling of another mechanism of gut microbiome effect on prediabetes and T2D onset.

This article contains supplementary material online at https://doi.org/10.2337/figshare.24114387.

This content is only available via PDF.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/journals/pages/license.

Article PDF first page preview

Article PDF first page preview