1-20 of 29 Search Results for

shp-small-heterodimer-partner

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Journal Articles
Journal: Diabetes
Diabetes 2003;52(5):1276–1279
Published: 01 May 2003
...Simon M.S. Mitchell; Michael N. Weedon; Katharine R. Owen; Beverley Shields; Beverley Wilkins-Wall; Mark Walker; Mark I. McCarthy; Timothy M. Frayling; Andrew T. Hattersley The orphan receptor small heterodimer partner (SHP, NR0B2) modulates the transcription activity of the MODY1 gene...
Journal Articles
Journal: Diabetes
Diabetes 2003;52(5):1288–1291
Published: 01 May 2003
...Chiao-Chien Connie Hung; I. Sadaf Farooqi; Ken Ong; Jian’an Luan; Julia M. Keogh; Marcus Pembrey; Giles S.H. Yeo; David Dunger; Nicholas J. Wareham; Stephen O’ Rahilly Loss of function mutations in the small heterodimer partner (SHP) gene have been reported to cause obesity and increased...
Includes: Supplementary data
Images
Integration of the metabolomics with transcriptomics data and their superim...
Published: 13 April 2012
FIG. 4. Integration of the metabolomics with transcriptomics data and their superimposition to build metabolic networks. A: Metabolic network of PPAR transcription pathway, which is connected to other metabolic processes such as lipid homeostasis, glucose, fatty acid metabolism, and inflammatory response. B: Network model of downstream of insulin-signaling pathways. The metabolites and the gene names shown in red are upregulated, and the same shown in blue are downregulated during insulin deficiency. B, binding; C, cleavage; CoA, coenzyme A; Erk, extracellular signal–related kinase; HPODE, hydroperoxylinoleic acid; IE, influence on expression; MAP, mitogen-activated protein; MAPK, MAP kinase; PDGF, platelet-derived growth factor; PI3K, phosphatidylinositol 3-kinase; PKA, cAMP-dependent protein kinase; PKB, protein kinase B; P-, dephosphorylation; RXR, retinoid X receptor; SREBP1c, sterol regulatory element–binding protein 1c; T, transformation; TGF, transforming growth factor; TR, transcription regulation; +P, phosphorylation; Z, catalysis; GPCR, G protein-coupled receptor; 15d-PGJ2, deoxy-delta prostaglandin J2; PDK/PDK1, 3-phosphoinositide-dependent protein kinase -1; ACACA, acetyl-CoA carboxylase; ACSL, acyl-CoA synthetase long-chain family members; ACLY, ATP citrate lyase; BCAA, branch chain amino acid; CISY, citrate synthase; DAG, diacylglycerol; ELOVL, elongation-of-very-long-chain-fatty acids; EMT, epithelial-mesenchymal transition; BEH, ethylene-bridged hybrid; 4E-BP1, eukaryotic translation initiation factor 4E binding protein 1; FADS1, fatty acid desaturase 1; FASN, fatty acid synthase; GSK3β, glycogen synthase kinase 3; GNAS, G protein αs- dependent adenylate cyclase; GRB2, growth factor receptor-bound protein 2; H-Ras, Harvey rat sarcoma viral oncogene homolog; HGF, hepatocyte growth factor; HXK, hexokinase; HSS, high-strength silica; HODE, hydroxyoctadecadienoic acid; INSIG2, insulin-induced gene 2; IRS-1 and IRS-2, insulin receptor substrates-1 and -2; TRIP, mediator complex subunit 1; MEK/MAP1, mitogen-activated protein kinase kinase 1; NCOA1, nuclear receptor coactivator 1; NRC1/SRC1, nuclear receptor coactivator 1; N-CoR, nuclear receptor corepressor; SMRT, nuclear receptor corepressors; NUDT1, nudix (nucleoside diphosphate-linked moiety X)-type motif 1; PtdIns(3,4,5)P3, phosphatidylinositol 3,4,5-triphosphate; P13K, phospatidylinositol 3-kinase; PtdIns(4,5)P2, phosphatidylinositol 4,5-biphosphate; PGE, prostaglandin; PTGIS, prostaglandin I2 (prostacyclin) synthase; PDGHS, prostaglandin-endoperoxide synthase 2 prostaglandin G/H synthase; COX2, cyclooxygenase 2; PDHA, pyruvate dehydrogenase (lipoamide) α1; QCs, quality controls; RARs, retinoic acid receptors; RXRA, retinoid X nuclear receptor (α; SHC, Src homology 2 domain containing transforming protein 1; SHP, small heterodimer partner; SOS, son of sevenless protein homologs 1 and 2; c-Raf-1, gene homolog 1; XIAP, X-linked inhibitor of apoptosis. FIG. 4. Integration of the metabolomics with transcriptomics data and their superimposition to build metabolic networks. A: Metabolic network of PPAR transcription pathway, which is connected to other metabolic processes such as lipid homeostasis, glucose, fatty acid metabolism, and inflammatory response. B: Network model of downstream of insulin-signaling pathways. The metabolites and the gene names shown in red are upregulated, and the same shown in blue are downregulated during insulin deficiency. B, binding; C, cleavage; CoA, coenzyme A; Erk, extracellular signal–related kinase; HPODE, hydroperoxylinoleic acid; IE, influence on expression; MAP, mitogen-activated protein; MAPK, MAP kinase; PDGF, platelet-derived growth factor; PI3K, phosphatidylinositol 3-kinase; PKA, cAMP-dependent protein kinase; PKB, protein kinase B; P-, dephosphorylation; RXR, retinoid X receptor; SREBP1c, sterol regulatory element–binding protein 1c; T, transformation; TGF, transforming growth factor; TR, transcription regulation; +P, phosphorylation; Z, catalysis; GPCR, G protein-coupled receptor; 15d-PGJ2, deoxy-delta prostaglandin J2; PDK/PDK1, 3-phosphoinositide-dependent protein kinase -1; ACACA, acetyl-CoA carboxylase; ACSL, acyl-CoA synthetase long-chain family members; ACLY, ATP citrate lyase; BCAA, branch chain amino acid; CISY, citrate synthase; DAG, diacylglycerol; ELOVL, elongation-of-very-long-chain-fatty acids; EMT, epithelial-mesenchymal transition; BEH, ethylene-bridged hybrid; 4E-BP1, eukaryotic translation initiation factor 4E binding protein 1; FADS1, fatty acid desaturase 1; FASN, fatty acid synthase; GSK3β, glycogen synthase kinase 3; GNAS, G protein αs- dependent adenylate cyclase; GRB2, growth factor receptor-bound protein 2; H-Ras, Harvey rat sarcoma viral oncogene homolog; HGF, hepatocyte growth factor; HXK, hexokinase; HSS, high-strength silica; HODE, hydroxyoctadecadienoic acid; INSIG2, insulin-induced gene 2; IRS-1 and IRS-2, insulin receptor substrates-1 and -2; TRIP, mediator complex subunit 1; MEK/MAP1, mitogen-activated protein kinase kinase 1; NCOA1, nuclear receptor coactivator 1; NRC1/SRC1, nuclear receptor coactivator 1; N-CoR, nuclear receptor corepressor; SMRT, nuclear receptor corepressors; NUDT1, nudix (nucleoside diphosphate-linked moiety X)-type motif 1; PtdIns(3,4,5)P3, phosphatidylinositol 3,4,5-triphosphate; P13K, phospatidylinositol 3-kinase; PtdIns(4,5)P2, phosphatidylinositol 4,5-biphosphate; PGE, prostaglandin; PTGIS, prostaglandin I2 (prostacyclin) synthase; PDGHS, prostaglandin-endoperoxide synthase 2 prostaglandin G/H synthase; COX2, cyclooxygenase 2; PDHA, pyruvate dehydrogenase (lipoamide) α1; QCs, quality controls; RARs, retinoic acid receptors; RXRA, retinoid X nuclear receptor (α; SHC, Src homology 2 domain containing transforming protein 1; SHP, small heterodimer partner; SOS, son of sevenless protein homologs 1 and 2; c-Raf-1, gene homolog 1; XIAP, X-linked inhibitor of apoptosis. More
Images
Integration of the metabolomics with transcriptomics data and their superim...
Published: 13 April 2012
FIG. 4. Integration of the metabolomics with transcriptomics data and their superimposition to build metabolic networks. A: Metabolic network of PPAR transcription pathway, which is connected to other metabolic processes such as lipid homeostasis, glucose, fatty acid metabolism, and inflammatory response. B: Network model of downstream of insulin-signaling pathways. The metabolites and the gene names shown in red are upregulated, and the same shown in blue are downregulated during insulin deficiency. B, binding; C, cleavage; CoA, coenzyme A; Erk, extracellular signal–related kinase; HPODE, hydroperoxylinoleic acid; IE, influence on expression; MAP, mitogen-activated protein; MAPK, MAP kinase; PDGF, platelet-derived growth factor; PI3K, phosphatidylinositol 3-kinase; PKA, cAMP-dependent protein kinase; PKB, protein kinase B; P-, dephosphorylation; RXR, retinoid X receptor; SREBP1c, sterol regulatory element–binding protein 1c; T, transformation; TGF, transforming growth factor; TR, transcription regulation; +P, phosphorylation; Z, catalysis; GPCR, G protein-coupled receptor; 15d-PGJ2, deoxy-delta prostaglandin J2; PDK/PDK1, 3-phosphoinositide-dependent protein kinase -1; ACACA, acetyl-CoA carboxylase; ACSL, acyl-CoA synthetase long-chain family members; ACLY, ATP citrate lyase; BCAA, branch chain amino acid; CISY, citrate synthase; DAG, diacylglycerol; ELOVL, elongation-of-very-long-chain-fatty acids; EMT, epithelial-mesenchymal transition; BEH, ethylene-bridged hybrid; 4E-BP1, eukaryotic translation initiation factor 4E binding protein 1; FADS1, fatty acid desaturase 1; FASN, fatty acid synthase; GSK3β, glycogen synthase kinase 3; GNAS, G protein αs- dependent adenylate cyclase; GRB2, growth factor receptor-bound protein 2; H-Ras, Harvey rat sarcoma viral oncogene homolog; HGF, hepatocyte growth factor; HXK, hexokinase; HSS, high-strength silica; HODE, hydroxyoctadecadienoic acid; INSIG2, insulin-induced gene 2; IRS-1 and IRS-2, insulin receptor substrates-1 and -2; TRIP, mediator complex subunit 1; MEK/MAP1, mitogen-activated protein kinase kinase 1; NCOA1, nuclear receptor coactivator 1; NRC1/SRC1, nuclear receptor coactivator 1; N-CoR, nuclear receptor corepressor; SMRT, nuclear receptor corepressors; NUDT1, nudix (nucleoside diphosphate-linked moiety X)-type motif 1; PtdIns(3,4,5)P3, phosphatidylinositol 3,4,5-triphosphate; P13K, phospatidylinositol 3-kinase; PtdIns(4,5)P2, phosphatidylinositol 4,5-biphosphate; PGE, prostaglandin; PTGIS, prostaglandin I2 (prostacyclin) synthase; PDGHS, prostaglandin-endoperoxide synthase 2 prostaglandin G/H synthase; COX2, cyclooxygenase 2; PDHA, pyruvate dehydrogenase (lipoamide) α1; QCs, quality controls; RARs, retinoic acid receptors; RXRA, retinoid X nuclear receptor (α; SHC, Src homology 2 domain containing transforming protein 1; SHP, small heterodimer partner; SOS, son of sevenless protein homologs 1 and 2; c-Raf-1, gene homolog 1; XIAP, X-linked inhibitor of apoptosis. FIG. 4. Integration of the metabolomics with transcriptomics data and their superimposition to build metabolic networks. A: Metabolic network of PPAR transcription pathway, which is connected to other metabolic processes such as lipid homeostasis, glucose, fatty acid metabolism, and inflammatory response. B: Network model of downstream of insulin-signaling pathways. The metabolites and the gene names shown in red are upregulated, and the same shown in blue are downregulated during insulin deficiency. B, binding; C, cleavage; CoA, coenzyme A; Erk, extracellular signal–related kinase; HPODE, hydroperoxylinoleic acid; IE, influence on expression; MAP, mitogen-activated protein; MAPK, MAP kinase; PDGF, platelet-derived growth factor; PI3K, phosphatidylinositol 3-kinase; PKA, cAMP-dependent protein kinase; PKB, protein kinase B; P-, dephosphorylation; RXR, retinoid X receptor; SREBP1c, sterol regulatory element–binding protein 1c; T, transformation; TGF, transforming growth factor; TR, transcription regulation; +P, phosphorylation; Z, catalysis; GPCR, G protein-coupled receptor; 15d-PGJ2, deoxy-delta prostaglandin J2; PDK/PDK1, 3-phosphoinositide-dependent protein kinase -1; ACACA, acetyl-CoA carboxylase; ACSL, acyl-CoA synthetase long-chain family members; ACLY, ATP citrate lyase; BCAA, branch chain amino acid; CISY, citrate synthase; DAG, diacylglycerol; ELOVL, elongation-of-very-long-chain-fatty acids; EMT, epithelial-mesenchymal transition; BEH, ethylene-bridged hybrid; 4E-BP1, eukaryotic translation initiation factor 4E binding protein 1; FADS1, fatty acid desaturase 1; FASN, fatty acid synthase; GSK3β, glycogen synthase kinase 3; GNAS, G protein αs- dependent adenylate cyclase; GRB2, growth factor receptor-bound protein 2; H-Ras, Harvey rat sarcoma viral oncogene homolog; HGF, hepatocyte growth factor; HXK, hexokinase; HSS, high-strength silica; HODE, hydroxyoctadecadienoic acid; INSIG2, insulin-induced gene 2; IRS-1 and IRS-2, insulin receptor substrates-1 and -2; TRIP, mediator complex subunit 1; MEK/MAP1, mitogen-activated protein kinase kinase 1; NCOA1, nuclear receptor coactivator 1; NRC1/SRC1, nuclear receptor coactivator 1; N-CoR, nuclear receptor corepressor; SMRT, nuclear receptor corepressors; NUDT1, nudix (nucleoside diphosphate-linked moiety X)-type motif 1; PtdIns(3,4,5)P3, phosphatidylinositol 3,4,5-triphosphate; P13K, phospatidylinositol 3-kinase; PtdIns(4,5)P2, phosphatidylinositol 4,5-biphosphate; PGE, prostaglandin; PTGIS, prostaglandin I2 (prostacyclin) synthase; PDGHS, prostaglandin-endoperoxide synthase 2 prostaglandin G/H synthase; COX2, cyclooxygenase 2; PDHA, pyruvate dehydrogenase (lipoamide) α1; QCs, quality controls; RARs, retinoic acid receptors; RXRA, retinoid X nuclear receptor (α; SHC, Src homology 2 domain containing transforming protein 1; SHP, small heterodimer partner; SOS, son of sevenless protein homologs 1 and 2; c-Raf-1, gene homolog 1; XIAP, X-linked inhibitor of apoptosis. More
Journal Articles
Journal: Diabetes
Diabetes 2007;56(2):431–437
Published: 01 February 2007
... of the hallmarks of such glucotoxicity is a reduction in insulin gene expression, resulting from decreased insulin promoter activity. Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor that inhibits nuclear receptor signaling in diverse metabolic pathways. In this study, we found...
Includes: Supplementary data
Journal Articles
Journal: Diabetes
Diabetes 2008;57(2):306–314
Published: 01 February 2008
... whether metformin regulates hepatic gluconeogenesis through the orphan nuclear receptor small heterodimer partner (SHP; NR0B2). RESEARCH DESIGN AND METHODS —We assessed the regulation of hepatic SHP gene expression by Northern blot analysis with metformin and adenovirus containing a constitutive active...
Includes: Supplementary data
Journal Articles
Journal: Diabetes
Diabetes 2001;50(11):2472–2480
Published: 01 November 2001
... was pancreatic islet–specific and distinct from hepatocytes, where we found normal expression of Glut2, L-Pk, and Hnf-4α in the liver of Hnf-1α−/− mice. The expression of small heterodimer partner (Shp-1), an orphan receptor that can heterodimerize with Hnf-4α and inhibit its...
Journal Articles
Journal: Diabetes
Diabetes 2006;55(9):2502–2509
Published: 01 September 2006
... oxidation, and 3) decreased expression of farnesoid X receptor (FXR) and small heterodimer partner (SHP). The increase in cholesterol content is associated with 1) increased expression of SREBP-2 and 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, which results in increased cholesterol...
Journal Articles
Journal: Diabetes
Diabetes 2021;70(3):733–744
Published: 16 December 2020
.... Farnesoid X receptor (FXR), a key regulator of hepatic energy metabolism, has potential for treatment of obesity-related diseases. We examined whether a nuclear receptor cascade involving FXR and FXR-induced small heterodimer partner (SHP) regulates expression of miR-802 to maintain glucose...
Journal Articles
Journal: Diabetes
Diabetes 2012;61(10):2484–2494
Published: 13 September 2012
... were determined in the liver of wild-type, small heterodimer partner (SHP)-, PDK4-, and signal transducer and activator of transcription 5 (STAT5)-null mice. Administration of GH in vivo increased PDK4 expression via a pathway dependent on STAT5 phosphorylation. Metformin inhibited the induction...
Includes: Supplementary data
Journal Articles
Journal: Diabetes
Diabetes 2007;56(1):239–247
Published: 01 January 2007
.... Islet mass was quantified in eight islets from each sample by a BZ-Analyzer (Keyence, Osaka, Japan). DIABETES 2007 BAT, brown adipose tissue CPT-1, carnitine palmitoyltransferase 1 FAS, fatty acid synthase LXR, liver X receptor SHP, small heterodimer partner Type 2 diabetes...
Includes: Supplementary data
Journal Articles
Journal: Diabetes
Diabetes 2002;51(4):910–914
Published: 01 April 2002
... secretion in response to a glucose load ( 6 ). Molecules that can modify the activity of HNF-4α might also be involved in glucose metabolism. Recent genetic studies have shown that mutations of the gene encoding small heterodimer partner (SHP), a repressor that interacts with HNF-4α, are associated...
Journal Articles
Journal: Diabetes
Diabetes 2004;53(4):890–898
Published: 01 April 2004
... 2004 15 1 2003 DIABETES 2004 apo, apolipoprotein Cyp7a1, cholesterol-7α-hydroxylase EMSA, electrophoretic mobility shift assay FXR, farnesoid X receptor FXRE, FXR response element LPK, liver pyruvate kinase RXR, retinoid X receptor SHP, small heterodimer partner STZ...
Journal Articles
Journal: Diabetes
Diabetes 2007;56(10):2485–2493
Published: 01 October 2007
..., plasminogen activator inhibitor-1 PAS, periodic acid Schiff SCD-1, stearoyl-CoA desaturase-1 SHP, small heterodimer partner α-SMA, α-smooth muscle actin SREBP, sterol regulatory element–binding protein TGF-β, transforming growth factor-β TNF-α, tumor necrosis factor-α VEGF, vascular endothelial growth...
Journal Articles
Journal: Diabetes
Diabetes 2003;52(7):1655–1663
Published: 01 July 2003
... responsive element RXR, retinoid X receptor SF-1, steroidogenic factor 1 SHP, small heterodimer partner TNF-α, tumor necrosis factor-α PPAR-γ acts as a nuclear receptor-transcription factor by forming a heterodimer with RXR. We examined the direct effect of PPAR-γ/RXR heterodimer...
Journal Articles
Journal: Diabetes
Diabetes 2012;61(5):1004–1016
Published: 13 April 2012
...; QCs, quality controls; RARs, retinoic acid receptors; RXRA, retinoid X nuclear receptor (α; SHC, Src homology 2 domain containing transforming protein 1; SHP, small heterodimer partner; SOS, son of sevenless protein homologs 1 and 2; c-Raf-1, gene homolog 1; XIAP, X-linked inhibitor of apoptosis...
Includes: Supplementary data
Journal Articles
Journal: Diabetes
Diabetes 2013;62(10):3384–3393
Published: 17 September 2013
... ). In the liver, FXR engages a feedback loop that inhibits bile acid synthesis through induction of small heterodimer partner (SHP). SHP interacts with liver receptor homolog 1 (LRH1) to form a heterodimer, resulting in the repression of cytochrome P450 7A1 (CYP7A1), the rate-limiting enzyme in the conversion...
Includes: Supplementary data
Journal Articles
Journal: Diabetes
Diabetes 2016;65(1):62–73
Published: 04 September 2015
... in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner–interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control...
Includes: Supplementary data
Journal Articles
Journal: Diabetes
Diabetes 2013;62(1):74–84
Published: 13 December 2012
...%), and decreased small heterodimer partner (SHP) protein expression by 40% ( Fig. 7C–F ). Blockade of hypothalamic insulin signaling prevented the decrease in SHP, a negative regulator of GK ( 21 ), without altering any of the other measured parameters ( Fig. 7A–E ). FIG. 7. Molecular...
Includes: Supplementary data
Journal Articles
Journal: Diabetes
Diabetes 2014;63(6):1870–1880
Published: 15 May 2014
... Biophys Res Commun   2012 ; 427 : 801 – 805 23058912 19. Kim   YD , Kim   YH , Cho   YM , et al . Metformin ameliorates IL-6-induced hepatic insulin resistance via induction of orphan nuclear receptor small heterodimer partner (SHP) in mouse models . Diabetologia   2012 ; 55 : 1482...